News Release

50-hour whole genome sequencing provides rapid diagnosis for children with genetic disorders

Test speed may reduce infant morbidity and mortality, study by Children's Mercy researchers published in Science Translational Medicine

Peer-Reviewed Publication

Children's Mercy Hospital

KANSAS CITY, Mo. – OCTOBER 3, 2012 – Today investigators at Children's Mercy Hospitals and Clinics in Kansas City reported the first use of whole genome information for diagnosing critically ill infants. As reported in Science Translational Medicine, the team describes STAT-Seq, a whole genome sequencing approach - from blood sample to returning results to a physician - in about 50 hours. Currently, testing even a single gene takes six weeks or more.

Speed of diagnosis is most critical in acute care situations, as in a neonatal intensive care unit (NICU), where medical decision-making is made in hours not weeks. Using STAT-Seq, with consent from parents, the investigators diagnosed acutely ill infants from the hospital's NICU. By casting a broad net over the entire set of about 3,500 genetic diseases, STAT-Seq demonstrates for the first time the potential for genome sequencing to influence therapeutic decisions in the immediate needs of NICU patients.

"Up to one third of babies admitted to a NICU in the U.S. have genetic diseases," said Stephen Kingsmore, M.B. Ch.B., D.Sc., FRCPath, Director of the Center for Pediatric Genomic Medicine at Children's Mercy. "By obtaining an interpreted genome in about two days, physicians can make practical use of diagnostic results to tailor treatments to individual infants and children."

Genetic diseases affect about three percent of children and account for 15 percent of childhood hospitalizations. Treatments are currently available for more than 500 genetic diseases. In about 70 of these, such as infantile Pompe disease and Krabbe disease, initiation of therapy in newborns can help prevent disabilities and life-threatening illnesses.

STAT-Seq uses software that translates physician-entered clinical features in individual patients into a comprehensive set of relevant diseases. Developed at Children's Mercy, this software substantially automates identification of the DNA variations that can explain the child's condition. The team uses Illumina's HiSeq 2500 system, which sequences an entire genome at high coverage in about 25 hours.

Although further research is needed, STAT-Seq also has the potential to offer cost-saving benefits. "By shortening the time-to-diagnosis, we may markedly reduce the number of other tests performed and reduce delays to a diagnosis," said Kingsmore. "Reaching an accurate diagnosis quickly can help to shorten hospitalization and reduce costs and stress for families."

###

About Children's Mercy Hospitals and Clinics

Children's Mercy Hospitals and Clinics, located in Kansas City, Mo., is one of the nation's top pediatric medical centers. The 333-bed hospital provides care for children from birth through the age of 21, and has been ranked by U.S. News & World Report as one of "America's Best Children's Hospitals" and recognized by the American Nurses Credentialing Center with Magnet designation for excellence in nursing services. Its faculty of 600 pediatricians and researchers across more than 40 subspecialties are actively involved in clinical care, pediatric research, and educating the next generation of pediatric subspecialists. For more information about Children's Mercy and its research, visit childrensmercy.org or download our mobile phone app CMH4YOU for all phone types. For breaking news and videos, follow us on Twitter, YouTube and Facebook.

About The Center for Pediatric Genomic Medicine at Children's Mercy Hospital

The first of its kind in a pediatric setting, The Center for Pediatric Genomic Medicine combines genome, computational and analytical capabilities to bring new diagnostic and treatment options to children with genetic diseases. For more information about STAT-Seq, diagnostic tests and current research, visit www.pediatricgenomicmedicine.com.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.