News Release

Oldest spinosaur brains revealed

Peer-Reviewed Publication

University of Southampton

Artist's impression of Ceratosuchops

image: Artist's impression of Ceratosuchops and the orientation of the endocast in the skull. view more 

Credit: Anthony Hutchings

Researchers from the University of Southampton and Ohio University have reconstructed the brains and inner ears of two British spinosaurs, helping uncover how these large predatory dinosaurs interacted with their environment. 

Spinosaurs are an unusual group of theropod dinosaurs, equipped with long, crocodile-like jaws and conical teeth. These adaptations helped them live a somewhat-aquatic lifestyle that involved stalking riverbanks in quest of prey, among which were large fish. This way of life was very different from that of more familiar theropods, like Allosaurus and Tyrannosaurus.

To better understand the evolution of spinosaur brains and senses, the team scanned fossils of Baryonyx from Surrey and Ceratosuchops from the Isle of Wight. These two are the oldest spinosaurs for which braincase material is known. The huge creatures would have been roaming the planet about 125 million years ago years ago. The braincases of both specimens are well preserved, and the team digitally reconstructed the internal soft tissues that had long rotted away.

The researchers found the olfactory bulbs, which process smells, weren’t particularly developed, and the ear was probably attuned to low frequency sounds. Those parts of the brain involved in keeping the head stable and the gaze fixed on prey were possibly less developed than they were in later, more specialised spinosaurs.

Findings are due to be published in the Journal of Anatomy.

“Despite their unusual ecology, it seems the brains and senses of these early spinosaurs retained many aspects in common with other large-bodied theropods – there is no evidence that their semi-aquatic lifestyles are reflected in the way their brains are organised,” said University of Southampton PhD student Chris Barker, who led the study.

One interpretation of this evidence is that the theropod ancestors of spinosaurs already possessed brains and sensory adaptations suited for part-time fish catching, and that ‘all’ spinosaurs needed to do to become specialised for a semi-aquatic existence was evolve an unusual snout and teeth.

“Because the skulls of all spinosaurs are so specialised for fish-catching, it’s surprising to see such ‘non-specialised’ brains,” said contributing author Dr Darren Naish. “But the results are still significant. It’s exciting to get so much information on sensory abilities – on hearing, sense of smell, balance and so on – from British dinosaurs. Using cutting-edged technology, we basically obtained all the brain-related information we possibly could from these fossils,” Dr Naish said.

Over the last few years, the EvoPalaeo Lab at the University of Southampton has conducted substantial research on new spinosaurs from the Isle of Wight. Ceratosuchops itself was only announced by the team in 2021, and its discovery was followed up by the publication of another new spinosaur – the gigantic White Rock spinosaur – in 2022. The braincase of Ceratosuchops was scanned at the μ-Vis X-ray Imaging Centre at the University of Southampton, home to some of the most powerful CT scanners in the country, and a model of its brain will be on display alongside its bones at Dinosaur Isle Museum in Sandown, on the Isle of Wight.

“This new research is just the latest in what amounts to a revolution in palaeontology due to advances in CT-based imaging of fossils,” said co-author Lawrence M. Witmer, professor of anatomy at the Ohio University Heritage College of Osteopathic Medicine, who has been CT scanning dinosaurs—including Baryonyx—for over 25 years. "We’re now in a position to be able to assess the cognitive and sensory capabilities of extinct animals and explore how the brain evolved in behaviourally extreme dinosaurs like spinosaurs.”

“This new study highlights the significant role British fossils have in our constantly evolving, fast-moving understanding of dinosaurs, and shows how the UK – and the University of Southampton in particular – is at the forefront of spinosaur research,” said Dr Neil Gostling who leads the University of Southampton’s EvoPalaeoLab. “Spinosaurs themselves are one of the most controversial of all dinosaur groups, and this study is a valuable addition to ongoing discussions of their biology and evolution.”


Notes to Editors

  1. For images, an artist’s impression, moving footage and related captions and credits, please visit and download from:
  2. A video about the research in this press release can be found and embedded from here:
  3. The paper ‘Modified skulls but conservative brains? The palaeoneurology and endocranial anatomy of baryonychine dinosaurs (Theropoda: Spinosauridae)’ will be published in Journal Of Anatomy DOI: 10.1111/joa.13837 after the embargo has lifted.

    To see a copy of the paper in advance, please email
  4. For interviews with Chris Barker or Dr Neil Gostling, please contact Peter Franklin, Media Relations, University of Southampton +44 23 8059 3212
  5. To contact Professor Lawrence M. Witmer in Ohio email:
  6. For more about Biological Sciences at the University of Southampton visit:
  7. The University of Southampton drives original thinking, turns knowledge into action and impact, and creates solutions to the world’s challenges. We are among the top 100 institutions globally (QS World University Rankings 2023). Our academics are leaders in their fields, forging links with high-profile international businesses and organisations, and inspiring a 22,000-strong community of exceptional students, from over 135 countries worldwide. Through our high-quality education, the University helps students on a journey of discovery to realise their potential and join our global network of over 200,000 alumni.
  8. For more on Ohio University visit:
  9. More about the μ-Vis X-ray Imaging Centre at the University of Southampton can be found at:

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.