News Release

Findings conclude sustained caffeine intake negates the benefits of creatine supplements

New study on the effects of combining caffeine and creatine

Peer-Reviewed Publication

American Physiological Society

(March 12, 2002) Bethesda, MD -- The serious athlete knows better than to rely just on a famous cereal to provide additional energy in preparation of a sporting event. Supplements have assumed an important role in today's training regimen. Some – such as anabolic steroids -- have been deemed illegal by most sports authorities. Others – such as caffeine and creatine -- are controversial yet presently allowed.

Background
Caffeine, the primary ingredient of coffee, is used as a central nervous system stimulant, diuretic, circulatory and respiratory stimulant, and as an adjunct in the treatment of headaches. Evidence shows that caffeine intensifies muscle contractions, masks the discomfort of physical exertion, and even speeds up the use of the muscles' short-term fuel stores. Some exercise physiologists believe that caffeine might improve performance by increasing fat oxidation and conserving muscle glycogen.

Creatine is used by athletes to increase lean body mass and improve performance in single and repetitive high-intensity, short-duration exercise tasks such as weightlifting, sprinting, and cycling. It is a popular nutritional supplement that is used by physically active people - from recreational exercisers to Olympic and professional athletes. According to a recent survey, 28 percent of athletes in an NCAA Division IA program reported using creatine. The creatine that is normally present in human muscle may come from two potential sources: dietary (animal flesh) and internally manufactured.

The purpose of creatine supplementation is to increase either total creatine stores or phosphocreatine (PCr) stores within muscle. Supplementation increases the rate of resynthesis of creatine phosphate following exercise. Various studies have shown increased muscle PCr levels after supplementing with 20-30 grams of creatine monohydrate daily.

Creatine supplementation has also been known to shorten relaxation time during intermittent maximal iosometric muscle contraction. This shortened time, coupled with a creatine loaded muscle facilitates calcium absorption into the sarcoplasmic reticulum (the endoplasmic reticulum of skeletal and cardiac muscle). However, some believe that caffeine intake enhances calcium release from the sarcoplasmic reticulum.

The Study
This has lead a research team from Belgium to suggest that the combined effects of creatine and caffeine supplementation may be counterproductive to creatine’s effect on muscle relaxation time. The authors of the study, "Opposite Actions of Caffeine and Creatine on Muscle Relaxation Time in Humans" are P. Hespel, B. Op 'T Eijnde, and M. Van Leemputte, all from the Department of Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium. Their findings appear in the February 2002 edition of the Journal of Applied Physiology.

Methodology
Ten physical education students (nine men and one woman) participated in the study. They were told to abstain from medication and caffeine intake one week prior to the experiment. The subjects were additionally asked to avoid changes in their level of physical activity and diet during the 25-week duration of the study. In this double blind experiment, the subjects performed the exercise test before and after creatine supplementation, short-term caffeine intake, creatine supplementation in the short term, acute caffeine intake, or a placebo.

This study required the random assignment of the students into five experimental protocols, each lasting eight days. Three elements were measured during an experiment consisting of 30 intermittent contractions of quadriceps entailing two seconds of stimulation and two seconds of rest. Measurements included maximum torque (Tmax), contraction time (CT) from 0.25 to 0.75 of Tmax, and relaxation time (RT) from 0.75 to 0.25 of max.

Results
Key findings of this study included:

· a confirmation of the fact that oral creatine supplementation shortens muscle relaxation time in humans: relation time was reduced by five percent and was significantly shorter than after the placebo;

· discovery that the intake of caffeine, combined with a daily creatine supplement, counteracted the beneficial effects of creatine intake on relaxation time and fatigue enhanced this inhibitory effect; and

· the observation that caffeine reduces the functional capacity of sacroplasmic reticulum calcium ATPase.

Conclusion The researchers believe that the findings from this experiment offer indirect evidence that suggests that facilitation of muscle relaxation may be important to the ergogenic action of creatine supplementation as well as power production during sprint exercises.

However, for the athlete in training, the key finding is that sustained caffeine intake, over a three-day period, negates the benefits of creatine supplements.

###

Source
February edition of the Journal of Applied Physiology.

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.