News Release

Company uses Georgia Tech innovation to monitor high-temperature gas turbine engines

Taking the heat

Business Announcement

Georgia Institute of Technology Research News

Maintaining large rotating equipment isn't easy or cheap. Take gas turbines used in power plants: Inspecting one of these behemoths for possible wear and tear costs about $500,000 in parts and labor. If companies skip on periodic checkups, they risk breakdowns averaging $4 million per incident.

Atlanta-based Radatec Inc. is about to transform condition monitoring with a new breed of non-contact displacement sensor.

Scheduled for commercial release later this summer, Radatec's sensors provide real-time information about critical mechanical components in areas that were previously off limits.

"We take the guesswork out of maintenance," says Scott Billington, Radatec's president and co-founder. "Instead of having to shut down heavy equipment, Radatec's sensors allow operators to virtually see inside complex machinery and predict when repairs are needed."

Based on microwave technology, Radatec's innovative sensors measure motion by sending a continuous microwave signal toward a vibrating or rotating object. This signal is reflected back to a radio receiver in the sensor. A patented algorithm then compares the transmitted signal with the received one, calculating a measure of displacement.

In contrast to existing sensors that use capacitive, eddy current or laser technologies, Radatec's sensors:

  • Operate at extremely high temperatures – up to 2,500 degrees Fahrenheit.

  • Remain unaffected by contaminants such as oil, dust and carbon deposits.

  • Are immune to electromagnetic interference.

These unique characteristics allow Radatec's sensors to operate in harsh environments. "Existing sensors work well in certain applications, but can't be used in areas where it's very hot, dirty or contaminated," says Jonathan Geisheimer, Radatec's co-founder and vice president. "And because these regions are often the most stressed areas of machinery, it's where major problems develop first."

Billington and Geisheimer launched Radatec in fall 2001, licensing technology they helped develop as researchers at Georgia Tech's Manufacturing Research Center and the Georgia Tech Research Institute. Since then, the company has filed several patents of its own and in 2002, Radatec was admitted to ATDC, Georgia Tech's incubator for fast-growing technology companies.

Because initial sensors were built for high-end military aircraft, Radatec used expensive components in the 24.1 GHz band. Yet last summer the company set out to build a more affordable system for commercial users.

Winning a $100,000 Small Business Innovation Research grant from the National Science Foundation, Radatec began working with 5.8 GHz components – parts found in consumer wireless networking applications, such as the high-speed routers in coffee shops.

Completed in December, Radatec's new 5.8 GHz platform has exceeded expectations, reducing both size and cost of sensors more than 100 times.

"Even though we're using less expensive components, performance remains the same," says Dave Burgess, Radatec's director of business development, noting that the sensors are accurate up to .0005 (half of one-thousandth of an inch). "We've also reduced assembly costs 10 times by migrating to an electronic-circuit board product."

Yet another positive: The 5.8 GHz band significantly reduces weight, a plus for aerospace applications. Although Radatec originally intended to maintain separate platforms, it will now use the 5.8 GHz band for both military and commercial products.

"It's interesting that we're applying cutting-edge telecom technology to machinery that fundamentally hasn't changed in a hundred years," Billington observes. "Most of our suppliers are surprised why we want these parts because they were never intended for displacement sensing." The global market for condition-monitoring equipment and services totaled more than $1 billion in 2002 with vibration-monitoring equipment comprising $491.7 million.

Within that sector, Radatec is targeting power generation and industrial rotating equipment.

Currently the company is streamlining its new prototype for production, shrinking size even further and improving signals. Other refinements include:

  • Standard data bus. A communications system will allow Radatec's sensors to plug into other factory systems.

  • Data recording. Radatec is adding logic that will trigger sensors to begin saving data when certain alarm levels are tripped, for example, if temperature or speed of machinery is too high.

  • Self-calibration. Using an advanced radar vector tracking system, a "teaching" algorithm will increase accuracy by eliminating the effects of objects near the sensors.

Beta testing began earlier this year with several industry partners. One customer is monitoring a hydroelectric generator at a Georgia dam. Another partner is including the sensors in an online monitoring system for DC motors found on diesel-electric locomotives.

The goal of beta testing is demonstrate accuracy and reliability while documenting Radatec's ability to reduce maintenance costs, increase productivity and improve safety.

"One of our challenges is getting industry to recognize just how revolutionary these sensors are," Burgess observes. "People understand condition monitoring, but they've never been able to do it in the areas we can now."

###

Technical contact: Dave Burgess (404-526-6048); E-mail: (daveb@radatec.com)


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.