News Release

Environmental decontamination, greenhouse gases, and the genome of a methane-loving bacterium

Peer-Reviewed Publication

PLOS



Click here for a high resolution photograph.

Mention greenhouse gases to most people and they're apt to think of carbon dioxide, fossil fuels, and big cars. Though carbon dioxide emissions are the major source of greenhouse gases, methane is far more effective at trapping heat in the atmosphere. Like increasing carbon dioxide levels, rising levels of atmospheric methane have been attributed to human activity, mostly in the form of landfills, natural gas and oil processing (about 60%), domesticated livestock (cattle account for about 75% of livestock contributions), and rice fields (up to 29% of total emissions).

Luckily, there are microbes, called methanotrophs, that consume methane. They've been found in soils, landfills, sediments, hotsprings, and peat bogs, among other environments. Methanotrophs have been the subject of increasing interest because they can use methane as a sole source of carbon and energy and could dramatically reduce biologically generated methane emissions. They've also been the focus of bioremediation efforts aimed at environmental decontamination. And now, with the publication of the first complete genome sequence of a methanotroph, such efforts will be all the easier. This week in PLoS Biology, a multidisciplinary team spanning the fields of genomics, bioinformatics, microbiology, evolutionary biology, and molecular biology report the complete genome sequence of Methylococcus capsulatus and shed light on the metabolism and biology of this ubiquitous microbe.

The genome appears well-equipped to meet the specialized needs of this methanotroph. Ward et al. found evidence of "genomic redundancy" in methane oxidation pathways, suggesting that M. capsulatus employs different pathways depending on the availability of molecules needed to sustain cellular activities. Most surprising, the researchers note, was evidence that this methane specialist can turn into a sort of metabolic generalist-with a capacity to use sugars, hydrogen, and sulfur-and appears able to survive reduced oxygen levels.

The M. capsulatus genome provides a platform for investigating the details of methanotroph biology and its potential as a biotech workhorse. It may also guide efforts to harness this bacterium's penchant for methane to reduce global greenhouse gas emissions, to degrade chlorinated hydrocarbons and other persistent pollutants, and to produce protein for animal feed.

###

Citation: Ward N, et al. (2004) Genomic Insights into Methanotrophy: The Complete Genome Sequence of Methylococcus capsulatus (Bath). PLoS Biol 2 (10): e303.

CONTACT:
Naomi Ward
The Institute for Genomic Research
9712 Medical Center Dr
Rockville, MD USA
1-301-795-7813
1-301-838-0208 (fax)
nward@tigr.org

PLEASE MENTION PLoS BIOLOGY (www.plosbiology.org) AS THE SOURCE FOR THESE ARTICLES. THANK YOU.

All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.