Public Release: 

Titania nanoparticles could lead to improved sensors and solar energy

Time evolution of the thermal properties during dehydration of sol-gel titania emulsions

AZoNetwork

Nanostructured titania (TiO2) has been extensively studied as a very promising material for applications in sensors, photocatalysis, solar energy conversion and optical coatings. As the properties of titania are determined by its different phases (i.e. rutile and anatase) and these phases depend upon the synthesis method employed, it is important to understand the change in properties that occurs during the synthesis process.

Thermal effusivity has been previously used in the study of the time evolution of dynamical systems in which polymerization and dehydration is involved.

In this work published in AZojomo* by A. Hernández-Ayala, T. López, P. Quintana , J. J. Alvarado-Gil and J. Pacheco from Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN)-Mérida and Universidad Autónoma Metropolitana-Iztapalapa the evolution of the thermal effusivity as a function of time is monitored using photoacoustic spectroscopy during the process of dehydration in a sol-gel formed titania sample.

During the dehydration process, the thermal effusivity showed a decrease in two successive stages that diminish as a function of time. Each of these stages followed a sigmoidal pattern of behavior. These results indicate that the thermal treatment influenced the dehydration process. The analysis of the dynamics of thermal effusivity allows the analysis of the mode in which water is released from the material. The relationship between the degradation of the organic matrix and phase transitions due to the thermal treatment are discussed.

###

The article is available to view at http://www.azom.com/Details.asp?ArticleID=3130

*AZojomo publishes high quality articles and papers on all aspects of materials science and related technologies. All the contributions are reviewed by a world class panel of editors who are experts in a wide spectrum of materials science. [See http://www.azom.com/Journal%20Editorial%20Board.asp]

AZojomo is based on the patented OARS (Open Access Rewards System) publishing protocol. The OARS protocol represents a unique development in the field of scientific publishing - the distribution of online scientific journal revenue between the authors, peer reviewers and site operators with no publication charges, just totally free to access high quality, peer reviewed materials science. [See http://www.azom.com/azojomo.asp and http://www.azom.com/oars.asp]

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.