News Release

Raiders of the lost dimension

Discovery another step toward understanding the quantum mechanics of the universe

Peer-Reviewed Publication

National High Magnetic Field Laboratory

Purple Han Warriors

image: This photo illustration shows Xi'an warriors superimposed on the lab-created Purple Han crystals. view more 

Credit: Photographs and image creation by: John Griffin, Michael Davidson, and Marcelo Jaime. Crystals in the picture provided by: Suchitra Sebastian, Philip Tanedo, Peter Brooks, and Ian Fisher

Ancient Chinese warriors are yet again helping scientists from the National High Magnetic Field Laboratory and their collaborators unravel some of the mysteries of the natural world.

It all starts with a pigment called Han purple that was used more than 2,000 years ago to color Xi'an terra cotta warriors of the Qian Dynasty. The pigment is known in the scientific world as BaCuSi206 -- and when magnet lab scientists exposed it to very high magnetic fields and very low temperatures, it entered a state of matter that is rarely observed.

The most recent research, published in today's issue of the journal Nature, shows that at the lowest temperature point at which the change of state occurs -- called the Quantum Critical Point -- the Han purple pigment actually loses a dimension: it goes from 3D to 2D.

Theoretical physicists have postulated that this kind of dimensional reduction might help explain some mysterious properties of other materials (high temperature superconductors and metallic magnets known as "heavy fermions" for example) near the absolute zero of temperature, but until now, a change in dimension had not been experimentally observed.

We live in three dimensions; up-down, front-back and left-right are the options. A sound wave, for example, "exists" in three dimensions and propagates in all of these directions simultaneously. If we could take a picture it would look like an expanding balloon. A wave in two dimensions looks like ripples on the surface of a pond. Ripples propagate on the surface only; they don't propagate perpendicular to the surface, which is the third dimension.

"As often happens in science, we found something we weren't looking for," said Marcelo Jaime, an experimental physicist at the magnet lab's Pulsed Field Facility in Los Alamos, N.M. "Much to our surprise, we found that when the temperature is low enough, the transition into the new magnetic state occurs in an unexpected way."

The experiment was performed at the magnet lab's DC Field Facility at Florida State University by Neil Harrison from the Pulsed Field Facility and Suchitra Sebastian from Stanford University, in collaboration with a team of scientists from these institutions. (To read more about the paper, "Dimensional Reduction at a Quantum Critical Point," visit the Nature Web site.)

They observed that at high magnetic fields (above 23 tesla) and temperatures between 1 and 3 degrees Kelvin (approximately -460 degrees Fahrenheit), the magnetic waves in three-dimensional crystals of Han purple "exist" in a three-dimensional world as per conventional wisdom. However, below those temperatures, near the quantum limit, one of the dimensions is no longer accessible, with the unexpected consequence that magnetic ripples propagate in only two dimensions. (Kelvin is the temperature scale used by scientists; zero degrees Kelvin is absolute zero, a temperature so low it is experimentally unreachable.)

The magnetic waves in the pigment exist in a unique state of matter called a Bose Einstein condensate (BEC), so named for its theoretical postulation by Satyendra Nath Bose and Albert Einstein. In the BEC state, the individual waves (associated with magnetism from pairs of copper atoms in BaCuSi2O6) lose their identities and condense into one giant wave of undulating magnetism. As the temperature is lowered, this magnetic wave becomes sensitive to vertical arrangement of individual copper layers, which are shifted relative to each other – a phenomenon known as "geometrical frustration." This makes it difficult for the magnetic wave to exist in the third up-down dimension any longer, and leads to a change to a two-dimensional wave, in very much the same way as ripples are confined to the surface of a pond. The theoretical framework that leads to this interpretation was provided by Cristian Batista at LANL.

Other members of the research team include Peter Sharma and Jaime of the National High Magnetic Field Laboratory at LANL, Luis Balicas from the NHMFL at FSU, Ian Fisher of Stanford, and Naoki Kawashima of the University of Tokyo.

"This is truly paramount work," said Alex Lacerda, associate director for user operations for all three sites of the magnet lab and director of the Pulsed Field Facility. "It takes world-class magnets, instruments and people, all of which the mag lab has, to produce these kinds of landmark results."

Research such as this could aid in the understanding of processes important for quantum computers. It is believed that this type of computer would operate based on quantum magnetism to perform many different computations at once. Theorists believe this capability could produce answers to mathematical problems much more quickly than is currently possible with conventional computers.

Scientists also think that someday, information gleaned from BEC will help make instruments for very sensitive measurement and tiny structures that are much smaller than computer chips.

###

The National High Magnetic Field Laboratory develops and operates state-of-the-art, high-magnetic-field facilities that faculty and visiting scientists and engineers use for interdisciplinary research. The laboratory – with branches in Tallahassee and Gainesville, Florida; and Los Alamos, New Mexico – is sponsored by the National Science Foundation and the state of Florida and is the only facility of its kind in the United States. To learn more, please visit http://www.magnet.fsu.edu.

About Han Purple
Chinese chemists first synthesized the Han purple pigment from barium copper silicates more than 2,000 years ago and used the pigment in pottery, large imperial projects such as the terra cotta warriors, and as a trading coin. Scientists at the magnet lab did not initially know the historical significance of their sample, which precedes both paper and the navigational compass. Historians speculate that the basic know-how necessary to make BaCuSi2O6 was spread by word of mouth from Egypt to China along the legendary "Silk Road." A similar pigment called Egyptian blue (SrCuSi4O10) was synthesized in Egypt more than 3,500 years ago.

OTHER CONTACTS:
Cristian D. Batista, (505) 667-5611
Marcelo Jaime, (505) 667-7625


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.