News Release

Targeted irradiation: A new weapon against HIV?

Peer-Reviewed Publication

PLOS

Antiretroviral therapy can keep HIV infection in check and delay and ameliorate the symptoms of HIV/AIDS. However, the drugs do not manage to eradicate the virus completely; individuals have to stay on the drugs permanently. Preclinical studies in mice by Ekatarina Dadachova and colleagues (Albert Einstein College of Medicine) published in the international open-access journal PLoS Medicine now suggest a new strategy to locate and kill many if not all HIV-infected cells in the body.

Radioimmunotherapy refers to an approach pioneered by cancer researchers in which patients are injected with antibodies against specific molecules characteristic of cancer cells (or in this case, HIV-infected cells) which carry a radioactive isotope. The approach takes advantage of the antibody's ability to rapidly hone in on its target cells and deliver the radioactive payload which then selectively kills the target cells and any HIV particles within it.

The study included some test-tube experiments on HIV infected human white blood cells as well as experiments on HIV infected mice that were injected with the radioactive antibodies. The researchers found that HIV infected white blood cells were successfully killed by radioactive antibodies that had been developed against specific proteins in the HIV particle that are routinely displayed at the surface of infected cells.

Two different types of antibodies and two different types of radioactive payload were tried. Both antibodies were very effective in targeting HIV infected cells, but one type of radioactive tag (213-Bismuth) was more efficient in killing the HIV-infected target cells than the other (188-Rhenium).

Then, mice were infected with HIV and treated with the radioactive antibodies (these particular mice had a deficient immune system, which means that they can be infected with the HIV virus that normally does not infect mice). The number of HIV infected cells was reduced in the treated mice compared with control animals, which were treated with antibodies not joined to a radioactive tag. The greater the antibody dose, the greater the proportion of HIV infected cells that were killed.

To assess 'collateral damage' the researchers examined whether the treatment with the radioactive antibodies damaged the red blood cells in the infected mice. They saw a drop in red blood cell numbers only for the mice receiving the highest dose of antibodies, suggesting that there is dose at which the antibodies are efficient and selective at killing their specific target cells.

These results provide initial support for the idea that radioimmunotherapy could work against HIV/AIDS and are encouraging for two reasons: First, because HIV is a formidable opponent and patients and doctors need as many different strategies as possible to help patients control the disease. And second, because they hint at the possibility of eradicating HIV completely, something that Dadachova and colleagues speculate would have the best chance of working at the early stage of infection right after someone is exposed to the virus.

###

Citation: Dadachova E, Patel MC, Toussi S, Apostolidis C, Morgenstern A, et al. (2006) Targeted killing of virally infected cells by radiolabeled antibodies to viral proteins. PLoS Med 3(11): e427.

PLEASE MENTION THE OPEN-ACCESS JOURNAL PLoS MEDICINE (www.plosmedicine.org) AS THE SOURCE FOR THESE ARTICLES AND PROVIDE A LINK TO THE FREELY-AVAILABLE TEXT. THANK YOU.

All works published in PLoS Medicine are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://dx.doi.org/10.1371/journal.pmed.0030427

PRESS-ONLY PREVIEW OF THE ARTICLE: http://www.plos.org/press/plme-03-11-dadachova.pdf

Related image for press use: http://www.plos.org/press/plme-03-11-dadachova.jpg

- Caption: The proposed mechanism by which radiolabeled antibody is effective against HIV infection

CONTACTS:

Ekaterina Dadachova
Albert Einstein College of Medicine
Nuclear Medicine
1695A Eastchester Rd
Bronx, NY 10461 United States of America
+1-718-405-8485
edadacho@aecom.yu.edu

Karen Gardner
Media Relations Manager
Albert Einstein College of Medicine
Bronx, NY 10461 United States of America
+1 718-430-3101
kgardner@aecom.yu.edu

About PLoS Medicine

PLoS Medicine is an open access, freely available international medical journal. It publishes original research that enhances our understanding of human health and disease, together with commentary and analysis of important global health issues. For more information, visit http://www.plosmedicine.org

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.