News Release

Slowly does it as giant magnet goes underground at CERN

Peer-Reviewed Publication

Science and Technology Facilities Council

At 5:00 am GMT this morning (28th February 2007) the heaviest piece of the Compact Muon Solenoid (CMS) particle detector began a momentous journey into its experimental cavern, 100 metres underground at CERN, Geneva.

Using a huge gantry crane, custom-built by VSL group, the pre-assembled central piece of the detector, weighing as much as five Jumbo jets (1920 tonnes) is being gently lowered into place. "This is a challenging feat of engineering, as there are just 20 cm of leeway between the detector and the walls of the shaft," said Austin Ball, Technical Coordinator of CMS. "The detector is supported by four massive cables, each with 55 strands and attached to a step-by-step hydraulic jacking system, with sophisticated monitoring and control to ensure the object does not sway or tilt." The entire process is expected to take about ten hours to complete.

The first seven of 15 pieces of the CMS detector have already been lowered, with the first piece arriving in the experimental cavern on 30 November 2006. The giant element being lowered today, which is 16 m tall, 17 m wide and 13 m long, marks the halfway point in the lowering process with the last piece scheduled to make its descent in summer 2007.

Professor Keith Mason, CEO of the Particle Physics and Astronomy Council (PPARC), which pays the UK subscription to CERN, said "The lowering of the largest piece of CMS today marks a major engineering milestone towards the switch on of the Large Hadron Collider (LHC) later this year. It is somewhat of a paradox that the largest, heaviest detectors ever built will be used to study the smallest scientific events."

The construction of CMS is a unique experience for the high-energy physics collaboration, as typically such experiments are built underground – without the need for moving and lowering large pieces. CMS has broken with tradition in order to start assembly before completion of the underground cavern, taking advantage of a spacious surface assembly hall to pre-assemble and pre-test the solenoid magnet and the various detectors used to measure particles resulting from collisions.

CMS is a general purpose experiment being prepared to take data at CERN's LHC which will be the world's largest and most complex scientific instrument when it switches on in November 2007. UK scientists from the University of Bristol, Imperial College London, Brunel University and the Rutherford Appleton Laboratory are members of CMS collaboration which involves over 2,000 scientists worldwide.

Experiments at the LHC will allow physicists to complete a journey that started with Newton's description of gravity. Gravity acts on mass, but so far science is unable to explain why the fundamental particles have the masses they have. Experiments such as CMS may provide the answer. LHC experiments will also probe the mysterious missing mass and dark energy of the universe – visible matter seems to account for just 4% of what must exist. They will investigate the reason for nature's preference for matter over antimatter, and will probe matter as it existed at the very beginning of time.

"This is a very exciting time for physics," said CMS spokesman Jim Virdee from Imperial College London, "the LHC is poised to take us to a new level of understanding of our Universe."

Dr Helen Heath, a CMS collaboration member from the University of Bristol said, "This is a very exciting time as the experiment many of us have worked on for over 10 years begins to come together."

###

Photos available on the following link: http://photo.cern.ch/testusers/index.php?dir=CMS%2028%2002%2007 For more info, please contact photolab@cern.ch and mention the CERN credit for any use.

Footage available from Jacques Fichet Email: jacques.fichet@cern.ch or phone +41 22 767 41 18 for more info. Please mention your FTP server address for transfer of images. Images are Copyright CERN.

CERN website – http://www.cern.ch

Contacts

James Gillies – CERN Press Office
Tel: +41 22 7674101
Email: james.gillies@cern.ch

Cherry Lewis – University of Bristol Press Office
Tel: 0117 928 8086
Email: cherry.lewis@bristol.ac.uk

Danielle Reeves – Imperial College London Press Office
Tel: 020 7594 2198
Email: Danielle.reeves@imperial.ac.uk

The Particle Physics and Astronomy Research Council (PPARC) is the UK's strategic science investment agency. It funds research, education and public understanding in four areas of science - particle physics, astronomy, cosmology and space science.

PPARC is government funded and provides research grants and studentships to scientists in British universities, gives researchers access to world-class facilities and funds the UK membership of international bodies such as the European Laboratory for Particle Physics (CERN), and the European Space Agency. It also contributes money for the UK telescopes overseas on La Palma, Hawaii, Australia and in Chile, the UK Astronomy Technology Centre at the Royal Observatory, Edinburgh and the MERLIN/VLBI National Facility, which includes the Lovell Telescope at Jodrell Bank observatory.

PPARC is a partner in the British National Space Centre [BNSC] which coordinates the UK's civil space activities.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.