Public Release: 

A new study of living cells could revolutionize the way we test drugs

Engineering and Physical Sciences Research Council

Researchers have made a breakthrough by detecting the electrical equivalent of a living cell's last gasp. The work takes them a step closer to both seeing the 'heartbeat' of a living cell and a new way to test drugs.

To stay alive, individual biological cells must transfer electrically charged particles, called ions across their cell membranes. This flow produces an electrical current that could, in principle, be detected with sensitive enough equipment. The recognition of such electrical activity would provide a kind of 'cellular cardiogram', allowing the daily functioning of the cell to be monitored in a similar way to a cardiograph showing the workings of a human heart.

With funding from the Engineering and Physical Sciences Research Council (EPSRC), Professor Andre Geim at the University of Manchester and his team have set out to make the first measurement of a cellular 'heartbeat'.

"Once we know the average or usual pattern of electrical activity in a cell, we can see how different drugs affect it," says Professor Geim. This would put an early safeguard into the system that could be applied long before the drug was tested on animals or even humans. In addition, the electrical activity test could be used to monitor the effects of pollution on naturally occurring micro-organisms in the environment.

To detect a cell's normal activity, Andre Geim and fellow researchers modified apparatus used originally to detect weak magnetic fields in superconductors*. Unfortunately, these modifications reduced the sensitivity of the technique, and the normal activity of the yeast cell could not be detected. This is the first time such a technique has been used on a living cell.

Not to be defeated, the researchers went about livening things up. They chose to invoke what any self-respecting party-goer would: alcohol. "We added ethanol - which is essentially vodka - to provoke a response from the cell. Ethanol is known to increase the transparency of cellular membranes which we hoped would give a signal we could detect," says Dr Irina Barbolina, who carried out the experiments.

It worked. As soon as the yeast got a taste of the vodka, the probe registered an electrical signal. A drunken hiccup perhaps? "It was probably the last gasp of the dying cell," says Professor Geim. The researchers had added so much ethanol that it poisoned the cell.

Although not the cardiogram they had hoped for, the electrical signal was the smallest yet detected from a living cell, around 100 times smaller than anything previously detected. It added up to an electrical current of just 10 moving electrons. It has given the team confidence that equipment sensitive enough to measure a cell's heartbeat can be developed.

"We already have some ideas about how to improve the sensitivity of the detector in water and next time we will also use a more active micro-organism such as an amoeba. Yeast is a subdued organism and doesn't generate much activity," says Professor Geim. "Probably, the most important outcome is that we defined an important goal. Cellular cardiograms can no longer be seen as absurd or science-fictional. If not us then someone else will soon develop a technique sensitive enough for such studies."


Notes to Editors:

"Through the eyes of a physicist, life can be seen as a motion of ions, and even the most primitive forms of life - like yeast - should generate electrical currents around them. I think everyone would be curious to see the 'heartbeat' of an individual cell," says Andre Geim.

Detecting the electrical activity of human beings is already an established part of medical diagnostic procedures. Electrocardiograms and electroencephalograms are widespread techniques. In the brain, neurons are known to produce relatively high voltages when they fire, allowing brain activity to be monitored.

*Superconductors are materials that lose electrical resistance below a certain temperature. They modified the apparatus so that, instead of a superconductor, a single yeast cell was positioned inside, and the technique's operational range was extended from the ultra-low temperatures needed by superconductors to room temperature. Moreover, because yeast requires water to live, the researchers had to further modify their apparatus so it would work while immersed in a liquid solution.

The Engineering and Physical Sciences Research Council (EPSRC) is the UK's main agency for funding research in engineering and the physical sciences. The EPSRC is investing £650 million this year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone's health, lifestyle and culture. EPSRC also actively promotes public awareness of science and engineering. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK. Website address for more information on EPSRC:

For further information contact:

Professor Andre Geim, University of Manchester, tel: 0161 275 4120, e-mail:

Two images ('yeastcell.jpg' and 'yeastsignal.jpg') are available from the EPSRC Press Office. Contact Natasha Richardson.

Suggested captions:

'yeastcell.jpg': An optical microscope image of a yeast cell (the round feature to the right) on top of the micron-sized detector used in the studies. The image is blurred because the cell is so small that large magnification is required in order to obtain the image.

'yeastsignal.jpg': Manchester researchers detected the last gasps of a dying yeast cell as a few spikes of electrical activity, using a kind of miniature cardiogram detector developed at the university. In this artist's impression, the yeast signal is shown as a blue line superimposed next to human cardiograms. The size of the yeast signal is magnified for illustrative purposes only and should not be compared with the human signal.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.