News Release

Manchester to spearhead £8.3 million particle physics project

Grant and Award Announcement

University of Manchester

The University of Manchester is leading an £8.3 million drive to develop a new type of particle accelerator, which could lead to more effective cancer treatment, greener electricity and less nuclear waste.

Particle accelerators are used to produce beams of charged particles such as protons or electrons, which are then used for a wide variety of applications in medicine and industry and for pure scientific research.

Researchers say there is a compelling need for new types of accelerator that are easier to operate and maintain, are more reliable and compact, yet are more flexible and efficient.

One such accelerator is the 'non-scaling fixed field alternating gradient' (NS-FFAG) accelerator.

It is considered a very promising candidate, but no-one has yet built such a machine, and there are many technical challenges to be overcome before such a machine could be used commercially.

The new CONFORM* project has received £7.5 million funding from the Engineering and Physical Sciences Research Council (EPSRC).

The research is being led Professor Roger Barlow from The School of Physics and Astronomy at The University of Manchester, in collaboration with Science and Technology Facilities Council (formerly the CCLRC) at the Daresbury Laboratory, The Cockroft Institute (also based at The Daresbury Laboratory), The University of Oxford, Imperial College London, The University of Birmingham, The University of Surrey, The University of Leeds, The University of Glasgow and The Gray Cancer Institute.

Professor Barlow said: "An opportunity is arising which could allow the NS-FFAG to be used as a new type of charged particle therapy machine for treating cancer. The reduced size, increased reliability and flexibility of such machines should all lead to lower costs of ownership while delivering more effective therapies."

Professor Barlow adds that beams of protons or heavier particles such as carbon ions can deposit much more radiation directly in the cancer, while losing much less energy in the surrounding healthy tissue.

He continued: "NS-FFAGs could be used for many other purposes. They could be used to help generate electricity without significant greenhouse gas emissions while reducing the amount of long-lived nuclear waste produced.

"They could play a significant role in elementary particle physics, perhaps leading to new discoveries about the origin and structure of the universe we see around us today.

"This type of accelerator could also be at the heart of a new generation of very intense sources of neutrons for studying the structure of materials and the dynamics of chemical reactions, of interest to physicists, chemists, biologists, engineers and many industries.

"The demonstration in this country that these machines are able to meet the expectations listed above would place the UK at the forefront of this exciting new development.

"The benefits of this type of particle accelerator are large and wide-ranging. However, the behaviour of beams in these machines is impossible to predict in detail. We need to understand their stability and how tolerant they are of small changes in configuration."

The CONFORM project will is split into three areas; EMMA (Electron Machine with Many Applications) will look to develop a prototype FFAG to be built at the Daresbury Laboratory, while PAMELA is a design study for a proton NS-FFAG for medical applications. The third area will look at possible applications, from archaeology to zoology.

###

Notes to editors

A launch press conference will be held at the Cockcroft Institute (off Junction 11 of the M56), Daresbury Science and Innovation Centre, Daresbury, Warrington, WA4 4AD on Thursday 3 May 2007 at 1pm in the Cockcroft Institute Foyer and Exhibition Area. Please confirm your attendance with Alex Waddington on 0161 306 3983.

* The full title of the project is 'Construction of a non-scaling FFAG for oncology, research and medicine'. More information from http://www.conform.ac.uk

For more information please contact Alex Waddington, Media Relations Officer, The University of Manchester, Tel 0161 306 3983.

Daresbury Laboratory Press Officer: Tony Buckley, Tel 01925 603272

Detailed EPSRC project summary: http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=EP/E032869/1

Daresbury Laboratory is part of the Science and Technology Facilities Council (STFC). It hosts one of STFC's major facilities, the Synchrotron Radiation Source (SRS), and a number of other resources and services that have a strategic importance for the research community, including The Cockroft Institute.

The Science and Technology Facilities Council is an independent, non-departmental public body of the Office of Science and Innovation which itself is part of the Department of Trade and Industry. It was formed as a new Research Council on 1 April 2007 through a merger of the Council for the Central Laboratory of the Research Councils (CCLRC) and the Particle Physics and Astronomy Research Council (PPARC) and the transfer of responsibility for nuclear physics from the Engineering and Physical Sciences Research Council (EPSRC). For more information please see http://www.scitech.ac.uk.

The Cockroft Institute is a recently-created international centre for Accelerator Science and Technology (AST) in the UK. It was officially opened in September 2006 and is a joint venture of Lancaster University, the Universities of Liverpool and Manchester, the Science and Technology Facilities Council (STFC) and the North West Development Agency (NWDA). The Institute is located in a purpose-built building on the Daresbury Laboratory campus and in centres in each of the participating universities. For more information see www.cockroft.ac.uk.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.