News Release

Blood-flow detector software show promise in preventing brain damage

Peer-Reviewed Publication

Johns Hopkins Medicine

Brady

image: Dr. Ken Brady, critical care specialist at the Johns Hopkins Children's Center, tracks blood-flow changes as they are displayed on a monitor by a patient's bedside, using cutting-edge software that may help ward off brain damage in critically injured children. view more 

Credit: Keith Weller, Johns Hopkins Medical Institutions

Researchers from the Johns Hopkins Children’s Center and Cambridge University in England have designed an automated means of continuously tracking potentially dangerous changes in blood flow to the brain in real time, a system that shows promise for preventing brain damage and death in children with head injuries.

A report on the work, including results of preliminary testing in baby pigs, will appear in the October issue of Stroke. Brain trauma is a top killer of children in the United States, with some 475,000 children suffering brain injuries each year, according to the U.S. Centers for Disease Control. “More tests are needed, but we have demonstrated the value of gathering much more detailed information over time about what safe levels of pressure and oxygen are in children,” says Ken Brady, M.D., a critical-care specialist at the Children’s Center who led the study. “Despite our ability to monitor pressure and oxygen levels, we have desperately needed more information about what are optimal levels for damage prevention in children,” Brady says. “Not knowing that is much like flying a plane in a fog, but this new software is helping us map safe terrain and danger zones in blood pressure.”

Healthy brains regulate blood flow and oxygen levels during drops and spikes in blood pressure, but injured brains may lose this fail-safe mechanism, leading to oxygen starvation and permanent brain damage. Although monitors have long been able to track blood pressure and blood flow to the brain, the Hopkins-Cambridge team created a system that for the first time precisely determines the “breakpoint” at which the brain begins to lose its ability to cope with changes in blood pressure.

The software does this, researchers say, by gauging minute shifts in blood pressure and oxygenation every 60 seconds and alerting doctors when they approach critical levels. Using a software program developed by two Cambridge scientists, Hopkins doctors fed data into a computer from two staples of the pediatric intensive care unit—an old-fashioned arterial blood pressure monitor and an oxygen meter that uses beams of infrared light to estimate oxygen saturation in the brain.

The software essentially makes these two devices talk to each other, researchers explain, showing in a continuous stream the interplay between blood pressure and oxygen levels, whether the brain is coping with pressure changes, and more importantly, what blood pressure range is conducive to that. “This intricate interplay between oxygenation and blood flow was the big unknown in what is indeed a simple equation, and now we’ve pinpointed the level where arterial blood pressure needs to be in order to promote healing in the injured brain,” Brady says.

In traumatic brain injuries, some brain damage occurs on impact, but much damage and indeed many deaths occur in the critical two-to-five-day window following the injury, a critical time when brain function must be monitored to ward off damage. This is when and where the new system will be most useful, researchers say. The technique could be also used in premature babies, who are particularly prone to ischemic strokes and bleeding in the brain because of their brains’ immature self-regulatory mechanisms and their fragile blood vessels.

###

Funding for the study came from the Sam Hulett Fund for Pediatric Traumatic Brain Injury, the Hartwell Foundation, the Foundation for Anesthesia Education and Research, and from the National Institutes of Health. Co-authors of the study: Jennifer Lee, M.D., Kathleen Kibler, B.S., Blaine Easley, M.D., Raymond Koehler, Ph.D., Donald Shaffner, M.D., all of Hopkins; and Piotr Smielewski, Ph.D., and Marek Czosnyka, Ph.D., of Cambridge University’s Addenbrooke’s Hospital, Cambridge, England.

Founded in 1912 as the children’s hospital of the Johns Hopkins Medical Institutions, the Johns Hopkins Children’s Center offers one of the most comprehensive pediatric medical programs in the country, from performing emergency trauma surgery, to finding causes and treatments for childhood cancers, to delivering a child’s good bill of health. The Johns Hopkins Children Center’s Pediatric Trauma Service and Burn Unit are Maryland’s state-designated trauma and burn centers for children. With recognized Centers of Excellence in 20 pediatric subspecialties including cardiology, transplant, psychiatric illnesses and genetic disorders, Children’s Center physicians, nurses and staff provide compassionate care to more than 90,000 children each year. For more information, please visit: www.hopkinschildrens.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.