News Release

DNA sensors found to be an effective artificial nose

Peer-Reviewed Publication

PLOS

In designing artificial noses modeled after biological olfaction, the challenge has been to generate a similarly large sensor repertoire with the requisite combinatorial complexity to detect odors in the real world. A further requirement is that the sensors can be manufactured with exact chemical precision and reproducibility.

In a new study published this week in the open-access journal PLoS Biology, Joel White, Mary AtKisson, John Kauer and colleagues demonstrate a previously unreported property of deoxyribonucleic acid. The researchers show that single-stranded DNA molecules tagged with a fluorescent reporter and dried onto solid surfaces can respond to vapor phase odor pulses in a sequence-selective manner.

In the context of detecting chemicals in either the aqueous or vapor phase, two general biological approaches have emerged. The first relies on individual, highly specific single receptors (sensors), each tuned to detect a single molecular species. Some examples include the receptors that mediate pheromone detection in insects, or those that function in neurotransmission.

The second approach, represented by the DNA sensors, is implemented by arrays of receptors with relatively broad responses. Here, specificity emerges from a constellation of receptor types that recognizes the molecule of interest. An example is the olfactory receptors in the main olfactory system of vertebrates.

This study not only highlights DNA’s potential for use in a novel and powerful odor detection system, but it also highlights its potential to play other novel roles in vivo, for example as a small molecule receptor, well outside of its familiar one as the repository of information in the genome.

###

Citation: White J, Truesdell K, Williams LB, AtKisson MS, Kauer JS (2008) Solid-state, dye-labeled DNA detects volatile compounds in the vapor phase. PLoS Biol 6(1): e9. doi:10.1371/journal.pbio.0060009

CONTACT:
John Kauer
Tufts University School of Medicine
Neuroscience
Boston, MA 02111
United States of America
+1-617-636-3844
+1-617-636-2413 (fax)
john.kauer@tufts.edu

PLEASE MENTION THE OPEN-ACCESS JOURNAL PLoS BIOLOGY (www.plosbiology.org) AS THE SOURCE FOR THESE ARTICLES AND PROVIDE A LINK TO THE FREELY-AVAILABLE TEXT. THANK YOU.

All works published in PLoS Biology are open access. Everything is immediately available—to read, download, redistribute, include in databases, and otherwise use—without cost to anyone, anywhere, subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.