News Release

Mane event: Recombination in lion feline immunodeficiency virus

Peer-Reviewed Publication

BMC (BioMed Central)

Parts of feline immunodeficiency virus (FIV) isolated from wild lions have undergone substantial genetic recombination, says research published in the online open access journal BMC Genomics. The sequencing of the two full FIV genomes of different lion subtypes shows the importance of whole-genome analysis in understanding complex genetic events. These findings will be relevant to big cat conservation and developing more effective animal models for HIV.

FIV is a member of the lentivirus family of retroviruses, as is HIV. The feline virus causes similar disease progression to HIV in domestic cats, and is used by researchers as an animal model for human disease.

FIV also infects a number of other cat species, many of which are endangered. The virulence and pathogenicity of the virus varies between species, but the genetic contribution to this variation is unclear. Full-length viral genome sequences are vital for scientists to understand the extent of genetic involvement yet, until recently, only six species-specific strains of FIV had been sequenced in full: Pallas cat, domestic cat (subtypes A, B and C) and puma (subtypes A and B).

Now, Jill Pecon-Slattery and Stephen J. O’Brien from the National Cancer Institute’s Center for Cancer Research in Frederick, MD, USA and colleagues from the USA and Botswana have sequenced the genomes of two lion FIV subtypes in full: FIVPle subtype B, isolated from lions in the Serengeti National Park in Tanzania, and FIVPle subtype E, isolated from lions in the Okavango Delta in Botswana. Using comparative genomics methods the team found that the two viral subtypes shared a common evolutionary history – confirming earlier research that suggested FIV has evolved in a species-specific manner.

However, the lion viruses showed substantial variation in the env gene region, which encodes the envelope glycoprotein essential for viral binding and entry. Lion virus subtype E was more closely related to domestic cat virus than to lion subtype B or Pallas cat virus. The researchers suggest this is due to recombination between strains in the wild, either involving an unidentified lion FIV strain or a strain from another African cat species.

The authors write: “The changes observed in the env gene as a consequence of recombination in FIVPle will provide important clues to the natural history of these viruses and their hosts, and may lead to insights into genetic determinants of pathogenicity and virulence differences between domestic cat and lion FIV; findings with important implications for HIV pathogenesis in humans and virus attenuation in wild populations of endangered species.”

###

Notes to Editors:

1. Genomic organization, sequence divergence, and recombination of feline immunodeficiency virus from lions in the wild.
Jill Pecon-Slattery, Carrie L. McCracken, Jennifer L. Troyer, Sue
VandeWoude, Melody Roelke, Kerry Sondgeroth, Christiaan Winterbach, Hanlie Winterbach and Stephen J. O'Brien
BMC Genomics (in press)

During embargo, article available at: http://www.biomedcentral.com/imedia/8645828671577328_article.pdf?random=490812

After the embargo, article available at journal website: http://www.biomedcentral.com/bmcgenomics/

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central’s open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication

2. BMC Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of gene mapping, sequencing and analysis, functional genomics, and proteomics. BMC Genomics (ISSN 1471-2164) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, Scopus, EMBASE, Zoological Record, Thomson Scientific (ISI) and Google Scholar.

3. BioMed Central (www.biomedcentral) is an independent online publishing house committed to providing immediate access without charge to the peer-reviewed biological and medical research it publishes. This commitment is based on the view that open access to research is essential to the rapid and efficient communication of science.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.