News Release

Umbilical cord blood cell therapy in an animal model of Alzheimer's disease

Peer-Reviewed Publication

Mary Ann Liebert, Inc./Genetic Engineering News

New Rochelle, NY, March 26, 2008—A novel strategy based on targeted immune suppression using human umbilical cord blood cells may improve the pathology and cognitive decline associated with Alzheimer’s disease, based on the results of a study in a mouse model of this currently untreatable neurodegenerative condition, as described in a groundbreaking report in Stem Cells and Development (www.liebertpub.com/scd), a peer-reviewed journal published by Mary Ann Liebert, Inc (www.liebertpub.com). The paper will be available free online (http://www.liebertonline.com/toc/scd/0/0).

Following a series of low-dose infusions of human umbilical cord blood cells into mice with Alzheimer’s-like disease, the amount of amyloid-ß and ß-amyloid plaques—hallmarks of Alzheimer’s pathology in the brain—was markedly reduced. Amyloid-ß induces an inflammatory response in the brain associated with the interaction of CD40 and CD40L, two pro-inflammatory molecules.

Human umbilical cord blood cell therapy was associated with suppression of CD40-CD40L activity, suggesting that this therapeutic approach modulates the activity of the immune system, offering the potential to target the pathogenic inflammatory response that may contribute to a variety of degenerative conditions, including Alzheimer’s disease.

Jun Tan, PhD, MD, and colleagues from USF (Tampa), Yale University (New Haven, CT), Cedars-Sinai Medical Center (Los Angeles, CA), Saneron CCEL Therapeutics (Tampa, FL), and Saitama Medical School (Japan), concluded that human umbilical cord blood cell-induced disruption of the CD40-CD40L interaction may alleviate the key pathologic changes in the brain associated with Alzheimer’s disease in a report entitled, “Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular beta-amyloid deposits in Alzheimer mice.”

“Previously, challenging observations have reported phenomena suggesting the non-hematologic therapeutic potential of blood stem cells. What is novel about this paper is its application to Alzheimer’s disease, and a significant advance in characterizing the ameliorative mechanism of action” says Graham C. Parker, PhD, Editor-in-Chief of Stem Cells and Development, and a research professor in The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of Michigan.

###

Stem Cells and Development is an authoritative peer-reviewed journal published bimonthly in print and online. The Journal is dedicated to communication and objective analysis of developments in the biology, characteristics, and therapeutic utility of stem cells, especially those of the hematopoietic system. A complete table of contents and free sample issue may be viewed online at www.liebertpub.com/scd

Mary Ann Liebert, Inc. (www.liebertpub.com) is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Cloning and Stem Cells, Human Gene Therapy, and Tissue Engineering. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry’s most widely read publication worldwide. A complete list of the firm’s 60 journals, books, and newsmagazines is available online.

Mary Ann Liebert, Inc. 140 Huguenot St., New Rochelle, NY 10801-5215
Phone: (914) 740-2100 (800) M-LIEBERT Fax: (914) 740-2101
www.liebertpub.com


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.