Public Release: 

OHSU Cancer Institute researchers identify new approach to help control drug resistance in leukemia

New research gives additional therapeutic tools for even more effective and longer control of chronic myeloid leukemia

Oregon Health & Science University

PORTLAND, Ore. - Oregon Health & Science University Cancer Institute researchers have found that an experimental drug known as SGX393 is effective against Gleevec-resistant chronic myeloid leukemia (CML). The results of their study will be published the week of March 24th in the Proceedings of the National Academy of Sciences.

Gleevec, the targeted therapy identified by OHSU Cancer Institute Director Brian Druker, M.D., is the current first line therapy for CML. Gleevec works by inhibiting the activity of Bcr-Abl, an enzyme that is present only in CML cells and upon which these cells depend for survival. Although most patients with CML respond dramatically to Gleevec, some patients develop resistance to the drug. Most Gleevec-resistant CML cells carry a mutated form of Bcr-Abl, which prevents Gleevec from functioning properly. The second-generation drugs Sprycel and Tasigna have been developed as largely successful treatments for Gleevec-resistant patients. However, one mutated form of Bcr-Abl, called T315I, is resistant to all three clinical CML drugs and is a frequent cause of relapse.

Michael Deininger, M.D., Ph.D., head of the Hematologic Malignancies Section, and his research team in the OHSU Cancer Institute have shown that SGX393, developed by SGX Pharmaceuticals, Inc., San Diego, Calif., inhibits the T315I mutant and most, but not all, other Gleevec-resistant mutants. This was shown to be true using laboratory models as well as leukemia cells from patients with CML.

Researchers then took this success a step further. Using a method developed in their laboratory to rapidly and accurately forecast drug-resistant Bcr-Abl mutations, Deininger and colleagues established a resistance 'profile' for SGX393. Though SGX393 showed a handful of mutation weak spots, the T315I mutation was absent among thousands of samples surveyed in the laboratory. In contrast, T315I was frequently recovered when running the screen with any of the other drugs.

"Because the resistance profile of SGX393 nicely complemented those of the other drugs and none of the drugs individually controlled all of the mutations, we extended our study to look at using a combination of the drugs. Remarkably, we found that the combination of SGX393 with either Sprycel or Tasigna completely suppressed resistance," said Christopher Eide, research technician. He is a co-author with fellow OHSU Cancer Institute researchers Thomas O'Hare, Ph.D., Jeffrey Tyner, Ph.D., Amie Corbin, and Matthew Wong.

"Our pre-clinical study suggests that rationally combining two Bcr-Abl inhibitors with different resistance profiles could provide a dragnet to protect against resistance," O'Hare said. "The idea is that each drug is especially adept at handling certain Bcr-Abl mutants and that the drugs can team up to eliminate cells carrying mutants that neither drug could eliminate on its own."

"The effectiveness and safety of Gleevec for most patients remains remarkable," said Deininger. "However, it is important for patients to know that, with the addition of a drug such as SGX393 to the set of current approved CML drugs, we may have the therapeutic tools to achieve and maintain even more effective and longer control of their cancer. This is not equivalent to a cure, but it could potentially represent an important advance in the management of CML."

###

This research was supported in part by the National Heart, Lung, and Blood Institute Grant HL082978-01 and the Leukemia and Lymphoma Society.

About the OHSU Cancer Institute

The OHSU Cancer Institute is the only National Cancer Institute-designated center between Sacramento and Seattle. It comprises some 200 clinical researchers, basic scientists and population scientists who work together to translate scientific discoveries into longer and better lives for Oregon's cancer patients. In the lab, basic scientists examine cancer cells and normal cells to uncover molecular abnormalities that cause the disease. This basic science informs more than 300 clinical trials conducted at the OHSU Cancer Institute.

About OHSU

Oregon Health & Science University is the state's only health and research university, and Oregon's only academic health center. OHSU is Portland's largest employer and the fourth largest in Oregon (excluding government), with 12,400 employees. OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. It serves patients from every corner of the state, and is a conduit for learning for more than 3,400 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to every county in the state.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.