News Release

Mapping of prostate cancer genes opens the door to new treatments

Peer-Reviewed Publication

BMC (BioMed Central)

Genetic changes during the initiation and progression of prostate cancer have eluded scientists to date. Now for the first time researchers have identified a specific gene expression profile of prostate cancer stem cells, with important implications for future treatments. The findings, published in BioMed Central’s open access journal Genome Biology, revealed 581 genes that are differentially expressed in certain prostate cancer cells, highlighting several pathways important in the cancer stem-cells biology, and offering targets for new chemopreventative and chemotherapeutic approaches.

The cells in the study represent less than 0.1% of prostate cancer tumors, and have properties that mark them out as cancer stem cells. The cells renew themselves, are highly invasive, and have a longer lifetime than normal stem cells. They also feature a primitive epithelial phenotype and can differentiate to recapitulate phenotypes seen in prostate tumors. The cells are found in all stages and types of prostate cancer.

Expression profiling of prostate cancers typically uses tumor cell mass samples to identify individual genes. In this study, researchers harnessed advances in microarray and target labelling technologies to produce a functionally annotated expression profile of these prostate cancer stem cells.

The team, from the YCR Cancer Research Unit at the University of York and Pro-cure Therapeutics Ltd, created a malignant stem cell signature by combining genes significantly overexpressed in stem cells with those significantly overexpressed in malignant stem cells. Quantitative RT-PCR, flow cytometry and immunocytochemistry were used to validate the gene expression changes.

Genes associated with inflammation were prominent in the cancer stem cell expression profile. Potential therapeutic target NFκB is known to promote cell survival. The researchers showed that an NFκB inhibitor triggered programmed cell death in cancer stem cells, but spared normal stem cells. This provides a potential therapeutic target for this rare group of cells, which are unlikely to be affected by current chemotherapy regimens.

“For the first time we are looking at the subpopulation of cancer cells which actually initiate new tumors” explains Anne Collins, who coordinated the study. “The genetic profiling we have carried out should stimulate new lines of research directed towards stem cell treatments for cancer”

###

Notes to Editors:

1. Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions
Richard Birnie, Steven D Bryce, Claire Roome, Vincent Dussupt, Alastair Droop, Shona H Lang, Paul A Berry, Catherine F Hyde, John L Lewis, Michael J Stower, Norman J Maitland and Anne T Collins
Genome Biology (in press)

During embargo, article available here: http://genomebiology.com/imedia/1868670031175172_article.pdf?random=361288

After the embargo, article available at the journal website: http://genomebiology.com/

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central’s open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication

2. Genome Biology publishes articles from the full spectrum of biology. Subjects covered include any aspect of molecular, cellular, organismal or population biology studied from a genomic perspective, as well as genomics, proteomics, bioinformatics, genomic methods (including structure prediction), computational biology, sequence analysis (including large-scale and cross-genome analyses), comparative biology and evolution. Genome Biology has an impact factor of 7.12.

3. BioMed Central (http://www.biomedcentral.com/) is an independent online publishing house committed to providing immediate access without charge to the peer-reviewed biological and medical research it publishes. This commitment is based on the view that open access to research is essential to the rapid and efficient communication of science.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.