Public Release: 

Evolution of new brain area enables complex movements

Findings online in the Proceedings of the National Academy of Sciences

University of Pittsburgh Schools of the Health Sciences

PITTSBURGH, Jan. 12 - A new area of the cerebral cortex has evolved to enable man and higher primates to pick up small objects and deftly use tools, according to neuroscientists at the University of Pittsburgh School of Medicine and Pittsburgh's Veterans Affairs Medical Center.

The brain's primary motor cortex turns out to have neighboring "old" and "new" parts. In most animals, including cats, rats and some monkeys, the old primary motor cortex controls movement indirectly through the circuitry of the spinal cord, explained senior author Peter Strick, Ph.D., professor in the department of neurobiology at the School of Medicine and senior career scientist at the VA Medical Center.

But in man, the Great Apes and some monkeys, another area of the motor cortex developed and is now home to a special set of cortico-motoneuronal (CM) cells, he said. These cells directly control spinal cord motor neurons, which are the nerve cells responsible for causing contraction of shoulder, elbow and finger muscles. The direct control exerted by CM cells bypasses the limitations imposed by spinal cord circuitry and permits the development of highly complex patterns of movement, such as the independent finger action needed for playing an instrument or typing.

"What we've shown is that along with evolution of direct control over motor neurons, a new cortical area has evolved that's right next to the old one," Dr. Strick said. "We still have much the same spinal machinery the frog has, but the new cortical area with CM cells endows humans with the superior hand skills to manufacture and use tools - an especially human trait."

He and co-author Jean-Alban Rathelot, Ph.D., a research associate in Dr. Strick's lab, based their conclusions on a series of experiments in which rabies virus was injected into single muscles in the shoulders, elbows or fingers of monkeys. The virus, chosen because of its unique ability to travel between networked nerve cells, was tracked to locate CM cells in the primary motor cortex. The findings have been published in the early online edition of the Proceedings of the National Academy of Sciences.

Dr. Strick noted that the direct connection from the cortex to motor neurons is not present at birth, but develops during the first few months of life and becomes fully mature around two years of age. Thus, the progress of an infant's motor skills is a display of the establishment of these connections.


The research was funded by grants from the Department of Veterans Affairs, the National Institutes of Health and the Pennsylvania Department of Health.

The University of Pittsburgh School of Medicine is one of the nation's leading medical schools, renowned for its curriculum that emphasizes both the science and humanity of medicine and its remarkable growth in National Institutes of Health (NIH) grant support, which has more than doubled since 1998. For fiscal year 2006, the University ranked sixth out of more than 3,000 entities receiving NIH support with respect to the research grants awarded to its faculty. As one of the university's six Schools of the Health Sciences, the School of Medicine is the academic partner to the University of Pittsburgh Medical Center. Their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.