News Release

Major international study challenges notions of how genes are controlled in mammals

McGill researchers participate in Japanese-led FANTOM consortium

Peer-Reviewed Publication

McGill University

This release is available in French.

Scientists at the Omics Science Center (OSC) of the RIKEN Yokohama Institute in Japan – along with researchers from McGill University and other institutions worldwide – are challenging current notions of how genes are controlled in mammals. Three years of intensive research by members of the international FANTOM consortium will culminate with the publication of several milestone scientific papers in Nature Genetics and other journals on April 20.

FANTOM4, the fourth stage of the Functional Annotation of the Mammalian cDNA collaboration, is led by Dr. Yoshihide Hayashizaki of OSC. Dr. Josée Dostie, a biochemist at McGill's Faculty of Medicine joined the FANTOM4 collaboration in 2007 and is its only Canadian member.

For several years, FANTOM researchers have provided the scientific community with extensive data on the genome of mammals, including detailed information on molecular function, biology and individual cell components. Now, the FANTOM4 stage of the collaboration has culminated in a breakthrough that will alter the way scientists understand transcription, the process of cellular copying and reproduction.

"This study really challenges the way we understand cellular differentiation," explained Dr. Dostie, who participated in the primary FANTOM4 research and also authored a satellite paper for publication in the journal Genome Biology. "The dogma right now is that there are so-called 'master regulators,' a series of protein switches that sit in specific places on the genome and induce genes. This is supposed to lead to a cascade that leads to cellular differentiation.

"The FANTOM4 studies show that this thesis is incorrect and there are no master regulators at all," she continued. "It's not like turning everything on like a switch. Instead, it looks like the expression of some genes needs to be decreased while others are increased in a more subtle, but coordinated way."

FANTOM4 is the first report of a large-scale gene network based on an experimental data-set and is likely to generate considerable excitement in the scientific community. The information is important for life science and medical researchers trying to uncover the processes by which cells undergo conversion or become cancerous. It is also related to controlling the growth and differentiation of stem cells and ensuring their safety for use in regenerative medicine.

"We are proud that we have created groundbreaking research in understanding more about how genes regulate cells at the molecular level and we want to acknowledge all consortium members for their great contribution to the research effort," said Dr. Harukazu Suzuki, scientific co-ordinator of the FANTOM4 consortium.

###

ABOUT McGILL UNIVERSITY

McGill University, founded in Montreal, Que., in 1821, is Canada's leading post-secondary institution. It has two campuses, 11 faculties, 10 professional schools, 300 programs of study and more than 34,000 students. McGill attracts students from more than 160 countries around the world. Almost half of McGill students claim a first language other than English – including 6,000 francophones – with more than 6,200 international students making up almost 20 per cent of the student body.

Contact:

RIKEN Omics Science Center
Director Yoshihide Hayashizaki
Project director Harukazu Suzuki
TEL: +81-45-503-2222 FAX: +81-45-503-9216

Public Relations Office
Keiko Iwano
TEL: +81-48-467-9272 FAX: +81-48-462-4715


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.