News Release

Between the genes -- a making sense of genomic 'dark matter'

Peer-Reviewed Publication

PLOS

A group of University of Toronto scientists have uncovered some of the secrets behind what molecular biologists call "dark matter" transcripts. The findings will be published next week in the online, open access journal PLoS Biology.

The term "dark matter" refers to the genomic output that does not originate from known genes, arising instead from regions that were once thought of as nothing more than "junk DNA." When genetic signals, namely RNA transcripts, were discovered coming from these areas, many believed there was a whole new mystery to solve, and that much more was going on than originally expected.

However, a new study, led by Postdoctoral Fellow Harm van Bakel and Prof. Timothy Hughes from the Banting and Best Department of Medical Research and the Terrence Donnelly Centre for Cellular and Biomolecular Research, indicates that most of these signals are likely to be by-products of signals from already known genes. Most of the other signals, the research indicates, are more consistent with background noise than meaningful signals.

Part of the mystery came from the methodology used. Many original reports of dark matter signals used "tiling microarrays," which these researchers determined was creating many false positives. By using a recently available method of sequencing very large numbers of transcripts, they were able to determine that unexplained dark matter only accounts for 2% of the total transcripts, much less than originally believed. Of that 2%, most are very close to known genes, indicating that they are likely to be part of the gene itself.

"The fact that most dark matter transcripts could be linked to known genes suggests that they are not signals emerging from a hidden universe within the genome," says van Bakel. "Though it is too early to exclude some functional role, the dark matter transcripts may primarily be by-products of normal gene expression."

"Given the size of the human genome, it's important to know where to focus our attention," says van Bakel. "Up until now, we had no way of knowing if we were missing out on some key biological information. This discovery allows us to zero in on what is really important."

###

Funding: This work was supported by Genome Canada through the Ontario Genomics Institute, the Ontario Research Fund (http://www.genomecanada.ca/) and March of Dimes (http://www.marchofdimes.ca). HvB was supported by the Netherlands Organization for Scientific Research (NWO; http://www.nwo.nl) (grant no. 825.06.033) and the Canadian Institutes of Health Research (CIHR; http://www.cihr-irsc.gc.ca/) (grant no. 193588). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests statement: The authors declare that no competing interests exist.

Citation: van Bakel H, Nislow C, Blencowe BJ, Hughes TR (2010) Most ''Dark Matter'' Transcripts Are Associated With Known Genes. PLoS Biol 8(5): e1000371. doi:10.1371/journal.pbio.1000371

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.1000371

PRESS ONLY PREVIEW OF THE ARTICLE: http://www.plos.org/press/plbi-08-05-Hughes.pdf

RELATED SYNOPSIS: http://www.plos.org/press/plbi-08-05-HughesSynopsis.pdf


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.