News Release

Ku70 shown to be critical regulator of DNA damage in Huntington's disease

Peer-Reviewed Publication

Rockefeller University Press

Ku70, a component of the DNA repair complex, is shown to be a new critical player in the DNA damage-linked pathologies of Huntington's disease (HD), according to a study in the May 3 issue of the Journal of Cell Biology (www.jcb.org).

DNA repair defends against naturally occurring or disease-related DNA damage during the long lifespan of neurons. Impairments to this process underlie "polyQ" diseases, a major group of hereditary neurodegenerative disorders that includes HD. Understanding the multiple pathogenic pathways that lead to such DNA repair dysfunction is key for the development of new therapies.

In this study, Hitoshi Okazawa and colleagues report that expression of mutant huntingtin (Htt)—the protein responsible for HD—in neurons causes double-strand breaks (DSBs) in genomic DNA and impairs DNA repair. The researchers identify Ku70 as a mediator of the DNA repair dysfunction in mutant Htt–expressing neurons—mutant Htt interacts with Ku70, impairing its function in nonhomologous end joining, which consequently increases DSB accumulation. Boosting Ku70 levels rescues mutant Htt–induced neurodegeneration in a mouse model of HD, suggesting that Ku70 is a critical regulator of DNA damage in HD pathology.

###

About The Journal of Cell Biology

Founded in 1955, The Journal of Cell Biology (JCB) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jcb.org.

Enokido, Y., et al. 2010. J. Cell Biol. doi:10.1083/jcb.200905138.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.