Public Release: 

Texas A&M professor heads out to study Gulf oil spill with first NSF grant

Texas A&M University

COLLEGE STATION, May 26, 2010 - A Texas A&M University oceanographer has been awarded a $160,000 grant from the National Science Foundation (NSF) to examine methane gas in the Gulf oil spill, believed to be one of the first such grants given to any Texas scientist.

John Kessler, assistant professor in the Department of Oceanography who specializes in ocean chemistry, says he will leave Gulfport, Miss., June 11 to travel to the oil spill, now as large as Maryland and Delaware combined. Kessler will be leading a team composed of other Texas A&M University oceanographers (Shari Yvon-Lewis, Tom Bianchi and Heath Mills) as well as 4-6 graduate students, and they expect to return around June 20.

The team will use the research vessel Cape Hatteras, which is operated by the Duke University/University of North Carolina Oceanographic Consortium, and will look mainly at the huge quantities of methane gas that are mixed in with oil spewing up from the seafloor. They will collaborate with researchers from the University of California at Santa Barbara, who will be studying the oil rising up from the seafloor.

"The mixture coming up is now about 40 percent methane and 60 percent oil," Kessler explains. "This means there are immense amounts of methane, a potent greenhouse gas, being input into the Gulf.

"We know that millions of years ago, there were vast undersea eruptions where methane gas escaped just like it is doing right now," he adds. "It is thought that this methane eventually contributed to climate change millions of years ago, so this gives us a chance to study the methane from that perspective as we measure how much is entering the atmosphere today."

Another question the team hopes to examine is how much oxygen is being consumed in the Gulf waters by the methane gas. While some of the methane is emitted to the Earth's atmosphere, other parts of it dissolve in the Gulf waters and are literally eaten by living microorganisms, a process which consumes oxygen.

"We hope to find out the effects of all this methane on the dissolved oxygen content in this area of the Gulf," Kessler says.

"We know that there are large areas of the Gulf that have oxygen-depleted waters that occur annually, and these are known as 'the dead zone.' But will these large amounts of methane make the dead zone areas even larger or the oxygen-depletion more severe? What are the links between methane and oxygen down there? We hope to find out."

Kessler says that the oil spill, while no doubt an environmental and economic disaster to much of the Gulf Coast, with at least 65 miles of shoreline already affected by oil making landfall in the marshes and wetlands, provides a once-in-a-lifetime window of research on many levels.

"No one would never ever be allowed to 'dump' this much methane and oil into the Gulf to replicate any scientific experiment," he notes. "So this oil spill gives us a very rare opportunity to study what has happened in the past, and perhaps to give us some good clues about what might happen in the future."


About research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $582 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Contact: Keith Randall, News & Information Services, at (979) 845-4644 or or John Kessler at (979) 845-5752 or

For more news about Texas A&M University, go to

Follow us on Twitter at

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.