News Release

Faster DNA analysis at room temperature

Peer-Reviewed Publication

American Institute of Physics

DNA Biochip

image: A palm-sized biochip for room temperature DNA detection developed by Paul Li at Simon Fraser University near Vancouver, Canada. The 4" diameter chip is roughly the same thickness as the Canadian one dollar coin, the Loonie (shown in the picture for scale). view more 

Credit: American Institute of Physics

This release is also available in Chinese.

College Park, MD (August 3, 2010) -- DNA microarrays are one of the most powerful tools in molecular biology today. The devices, which can be used to probe biological samples and detect particular genes or genetic sequences, are employed in everything from forensic analysis to disease detection to drug development.

Now Paul Li and colleagues at Simon Fraser University in Burnaby, Canada have combined DNA microarrays with microfluidic devices, which are used for the precise control of liquids at the nanoscale. In an upcoming issue of the journal Biomicrofluidics, which is published by the American Institute of Physics (AIP), Li and his colleagues describe how the first combined device can be used for probing and detecting DNA.

The key to Li's result: gold nanoparticles. Suspended in liquid and mixed with DNA, the nanometer-scale spheres of gold act as mini magnets that adhere to each of the DNA's twin strands. When the DNA is heated, the two strands separate, and the gold nanoparticles keep them apart, which allows the single strands to be probed with other pieces of DNA that are engineered to recognize particular sequences.

Li, whose work is funded by the Natural Sciences and Engineering Research Council of Canada, is applying for a patent for his technique. He sees a host of benefits from the combination of DNA microarrays and microfluidics.

"It's faster and requires a relatively small sample," he says, adding in his paper that "the whole procedure is accomplished at room temperature in an hour and apparatus for high temperature… is not required"

###

The article, "Gold nanoparticle-assisted single base-pair mismatch discrimination on a microfluidic microarray device" by Lin Wang and Paul C. Li will appear in the journal Biomicrofluidics. See: http://bmf.aip.org/

Journalists may request a free PDF of this article by contacting jbardi@aip.org

NOTE: An image is available for journalists. Please contact jbardi@aip.org

Image Caption: A palm-sized biochip for room temperature DNA detection developed by Paul Li at Simon Fraser University near Vancouver, Canada. The 4" diameter chip is roughly the same thickness as the Canadian one dollar coin, the Loonie (shown in the picture for scale).

Audio clip portions of an interview with one of the researchers are also available. For more details, contact: jbardi@aip.org

ABOUT BIOMICROFLUIDICS

Biomicrofluidics is an online open-access journal published by the American Institute of Physics to rapidly disseminate research in elucidating fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena as well as novel microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. See: http://bmf.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.