News Release

BGI develops RNA-Seq (Quantification) from as low as 100 Ng total RNA

Peer-Reviewed Publication

BGI Shenzhen

September 20th, 2011,Shenzhen, China – BGI, the world's largest genomics organization, reported that they have achieved optimization RNA-Seq (Quantification) library construction with total RNA inputs as low as 100 ng. This breakthrough enables the application of RNA-Seq (Quantification) technology to experimental designs utilizing samples derived from small numbers of cells, such as those widely used in pharmaceutical research, cancer research, and immunology.

RNA-Seq (Quantification), a version of Next Generation Sequencing (NGS), is used for transcriptome quantification and analyzing the gene expression of certain biological objects in specific conditions. It can be widely applied in biomarker detection, basic medical research, drug discovery, among others. Compared with microarray technology, high-throughput RNA sequencing can provide comprehensive assessment of RNA expression profiles with the advantages of high-throughput data, low background, high sensitivity and repeatability.

However, some tissues or cultures from specialized cells involved in clinical and pharmaceutical research make it difficult to obtain sufficient RNA for RNA-Seq (Quantification), which previously required 1 μg or more total RNA. BGI has optimized the procedures to enable RNA-Seq (Quantification) using as little as 100 ng total RNA sample input to generate high-quality data. "The improvement of RNA-Seq (Quantification) not only can simplify sample preparation, but also make this sequencing service more cost-effective and with rapid turnaround time," said Jiong Zhang, Technical Specialist at BGI.

To ensure the accuracy and quality of data, many evaluations have been conducted at BGI, including the reads quality, assessments of reads randomness, gene coverage, experimental reproducibility, and data accuracy. Results demonstrated that the data generated from 100 ng sample input library was as high-quality as that from traditional 1 μg RNA input library. "I hope our enhanced technique can contribute more to drug discovery and therapeutic application in the future," added Zhang.

###

About BGI

BGI was founded in Beijing, China on September 9th, 1999 with the mission of being a premier scientific partner to the global research community. The goal of BGI is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best available technology, economies of scale, and expert bioinformatics resources. BGI, and its affiliates, BGI Americas and BGI Europe, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research which has generated over 170 publications in top-tier journals such as Nature and Science. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, 1000 genomes and human Gut metagenome.

For more information about BGI, please visit www.genomics.cn or www.bgisequence.com

Contact Information:

Jiong Zhang
Technical Specialist of Pharmacogenomics R&D
BGI
zhangjiong@genomics.cn
www.genomics.cn

Bicheng Yang
Public Communication Officer
BGI
+86-755-82639701
yangbicheng@genomics.cn
www.genomics.cn


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.