News Release

Preventing dangerous nonsense in human gene expression

Peer-Reviewed Publication

PLOS

Human genes are preferentially encoded by codons that are less likely to be mistranscribed (or "misread") into a STOP codon. This finding by Brian Cusack and colleagues from the Max Planck Institute for Molecular Genetics in Berlin and the CNRS in Lyon and Paris is published in the open-access journal PLoS Genetics on October 13th, 2011.

Since the completion of the human genome sequence over a decade ago, a multitude of studies have investigated the forces that have shaped the genome over time. However, because gene expression errors are not inherited, they have been disregarded as an evolutionary force until now.

In biological systems, mistakes are made because the cellular machinery is complex and error prone. The errors made in copying DNA for transmission to offspring (genetic mutations) have so far been the primary focus of molecular evolution. But errors are much more frequent in the day-to-day task of gene expression, for example in the transcription of DNA into RNA. This study shows how human genes use a dual strategy of "prevention and cure" to deal with a specific type of gene expression error: transcriptional errors that create premature STOP codons (so-called "nonsense errors"). Nonsense errors can be highly toxic for the cell, so natural selection has evolved a strategy called nonsense-mediated decay (NMD) to "cure" such errors. However, this cure is inefficient. This work identifies a strategy of prevention that has evolved to compensate for the inefficiency of NMD by decreasing the frequency of nonsense errors. Natural selection achieves this through the avoidance of codons that are prone to nonsense errors and the preferential usage of codons robust to such errors.

Cusack et al's results provide a rationale for the evolution of robustness by implying that transcriptional errors are visible to natural selection because they are frequent and deleterious. According to the authors, "this raises the question of the past and present impact of such errors on human disease." An accompanying Perspectives article is published in PLoS Genetics on the same day.

###

FINANCIAL DISCLOSURE: This work was supported by the Max Planck Society and the Centre National de la Recherche Scientifique. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

COMPETING INTERESTS: The authors have declared that no competing interests exist.

CITATION: Cusack BP, Arndt PF, Duret L, Crollius HR (2011) Preventing Dangerous Nonsense: Selection for Robustness to Transcriptional Error in Human Genes. PLoS Genet 7(10): e1002276. doi:10.1371/journal.pgen.1002276

CONTACT:

Brian P. Cusack
Max Planck Institute for Molecular Genetics
Department of Computational Molecular Biology
Ihnestraße 63-73
14195 Berlin
Germany
Email: cusack@molgen.mpg.de

Patricia Marquardt (Press and Public Relations Officer)
Max Planck Institute for Molecular Genetics
Ihnestraße 63-73
14195 Berlin
Germany
Email: patricia.marquardt@molgen.mpg.de

Disclaimer

This press release refers to an upcoming article in PLoS Genetics. The release is provided by journal staff, or by the article authors and/or their institutions. Any opinions expressed in this release or article are the personal views of the journal staff and/or article contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

About PLoS Genetics

PLoS Genetics (http://www.plosgenetics.org) reflects the full breadth and interdisciplinary nature of genetics and genomics research by publishing outstanding original contributions in all areas of biology. All works published in PLoS Genetics are open access. Everything is immediately and freely available online throughout the world subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.