News Release

'Rogue DNA' plays key role in heart failure, study shows

DNA from the heart's own cells plays a role in heart failure by mistakenly activating the body's immune system, according to a study by British and Japanese researchers

Peer-Reviewed Publication

King's College London

DNA from the heart's own cells plays a role in heart failure by mistakenly activating the body's immune system, according to a study by British and Japanese researchers, co-funded by the British Heart Foundation (BHF). Scientists from King's College London and Osaka University Medical School in Japan showed that during heart failure – a debilitating condition affecting 750,000 people in the UK – this 'rogue DNA' can kick start the body's natural response to infection, contributing to the process of heart failure.

During heart failure immune cells invade the heart, a process called inflammation. The process makes heart muscle less efficient, reducing its ability to pump blood around the body. Inflammation is usually only activated when the body is facing a threat, such as an infection by a bacteria or virus.

The study, to be published today in the journal Nature, shows in mice that inflammation in the heart can be caused by the body's own DNA. The DNA escapes when a natural process to break down damaged cell components, called autophagy, becomes less efficient. Autophagy can stop working correctly when cells are under stress, such as during heart failure.

The problem DNA comes from energy-generating structures in heart cells, called mitochondria. Mitochondrial DNA triggers inflammation because it resembles DNA from bacteria, triggering a receptor in immune cells called Toll-like Receptor 9 (TLR9).

Mitochondria fascinate scientists because they seem to have evolved from bacteria more than 1.5 billion years ago, when primitive forms of life recruited bacteria to help them produce their energy. Although this pact with bacteria is one of evolution's success stories, this study shows that the human immune system still recognises the bacterial fingerprint in mitochondrial DNA, triggering a response from the immune system.

Professor Kinya Otsu, recently announced as BHF Professor of Cardiology at King's College London, who led the study, said: 'When mitochondria are damaged by stress, such as during heart failure, they become a problem because their DNA still retains an ancient bacterial fingerprint that mobilises the body's defences.

'We previously showed that damaged mitochondria build-up during heart failure, when the natural processes of cell breakdown become less effective. Now we've shown that the DNA fingerprint that we retain in our mitochondria causes our own immune system to turn against us.'

Dr Shannon Amoils, Research Advisor at the BHF, said: 'This intriguing discovery is an important breakthrough in our understanding of why, during heart failure, the immune system becomes activated without the presence of any obvious external threat. This inflammation in the heart plays an important role in the disease process.

'Heart cells are packed with mitochondria, which provide the power the heart needs to pump blood around the body, and this study shows that, during heart failure, DNA from these mitochondria at least partly causes the problem. This research points towards new avenues of exploration that could hopefully lead to treatments for heart failure in the future.'

Professor Kinya Otsu was recently awarded more than £3 million by the BHF to carry out his pioneering work.

###

CONTACT

Katherine Barnes
International Press Officer
King's College London
Tel: +44 207 848 3076
Email: katherine.barnes@kcl.ac.uk

BHF press office
Tel: +44 20 7554 0164 or +44 7764 290 381 (out of hours)
Email: newsdesk@bhf.org.uk

NOTES TO EDITORS

1. Takafumi Oka et al (2012). Nature. Mitochondrial DNA That Escapes from Autophagy Causes Inflammation and Heart Failure. doi: 10.1038/nature10992.

2. Scarborough P et al (2010). Coronary heart disease statistics 2010 edition. British Heart Foundation: London.

The British Heart Foundation (BHF) is the UK's heart charity, dedicated to saving lives through pioneering research, patient care, campaigning for change and by providing vital information. But we urgently need help. We rely on donations of time and money to continue our life-saving work. Because together we can beat heart disease.

For more information visit www.bhf.org.uk/pressoffice

For more information about BHF research visit www.bhf.org.uk/science

About King's College London (www.kcl.ac.uk)

King's College London is one of the top 30 universities in the world (2011/12 QS World University Rankings), and the fourth oldest in England. A research-led university based in the heart of London, King's has nearly 23,500 students (of whom more than 9,000 are graduate students) from nearly 140 countries, and some 6,000 employees. King's is in the second phase of a £1 billion redevelopment programme which is transforming its estate.

King's has an outstanding reputation for providing world-class teaching and cutting-edge research. In the 2008 Research Assessment Exercise for British universities, 23 departments were ranked in the top quartile of British universities; over half of our academic staff work in departments that are in the top 10 per cent in the UK in their field and can thus be classed as world leading. The College is in the top seven UK universities for research earnings and has an overall annual income of nearly £450 million.

King's has a particularly distinguished reputation in the humanities, law, the sciences (including a wide range of health areas such as psychiatry, medicine, nursing and dentistry) and social sciences including international affairs. It has played a major role in many of the advances that have shaped modern life, such as the discovery of the structure of DNA and research that led to the development of radio, television, mobile phones and radar. It is the largest centre for the education of healthcare professionals in Europe; no university has more Medical Research Council Centres.

King's College London and Guy's and St Thomas', King's College Hospital and South London and Maudsley NHS Foundation Trusts are part of King's Health Partners. King's Health Partners Academic Health Sciences Centre (AHSC) is a pioneering global collaboration between one of the world's leading research-led universities and three of London's most successful NHS Foundation Trusts, including leading teaching hospitals and comprehensive mental health services. For more information, visit: www.kingshealthpartners.org

The College is in the midst of a five-year, £500 million fundraising campaign – World questions|King's answers – created to address some of the most pressing challenges facing humanity as quickly as feasible. The campaign's three priority areas are neuroscience and mental health, leadership and society, and cancer. More information about the campaign is available at www.kcl.ac.uk/kingsanswers.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.