News Release

A new kind of quantum junction

Long predicted but never observed, coherent quantum phase slip can be harnessed to develop a novel class of quantum devices

Peer-Reviewed Publication

RIKEN

Josephson Tunnel and CQPS

image: This figure shows the Josephson tunnel (left) and coherent quantum phase slip (right). At left, two superconductors are separated by thin insulator (in this case space). A current is produced by superconducting electron pairs tunneling across the insulator. At right, two insulators are separated by superconductor. A current is produced by magnetic flux tunneling across the superconductor. view more 

Credit: RIKEN

A new type of quantum bit called a "phase-slip qubit", devised by researchers at the RIKEN Advanced Science Institute and their collaborators, has enabled the world's first-ever experimental demonstration of coherent quantum phase slip (CQPS). The groundbreaking result sheds light on an elusive phenomenon whose existence, a natural outcome of the hundred-year-old theory of superconductivity, has long been speculated, but never actually observed.

Superconductivity describes a phenomenon in which electrons pass through certain types of materials without any resistance when cooled below a given temperature. Among the most important applications of superconductivity is the Josephson junction, named after physicist Brian Josephson, who in 1962 predicted that a superconducting current could tunnel between superconductors separated by a thin insulating layer. This phenomenon, the Josephson effect, has been applied in a variety of areas including magnetometer design, voltage standardization, and quantum computing.

Researchers have long known of an intriguing theoretical parallel to the Josephson effect in which insulator and superconductor are reversed: rather than electric charges jumping from one superconducting layer to another across an insulating layer, magnetic flux quanta jump from one insulator to another across a superconducting layer (Figure 1). Quantum tunneling of electrons in the Josephson junction is replaced in this parallel by the coherent "slip" of the phase, a quantum variable that, in superconducting circuits, plays a dual role to that of electric charge.

Coherent quantum phase slip (CQPS), as this phenomenon is known, has long been limited to theory—but no more. In a paper in Nature, Oleg Astafiev and colleagues at the RIKEN Advanced Science Institute (ASI) and NEC Smart Energy Research Laboratories report on the first direct observation of CQPS in a narrow superconducting wire of indium-oxide (InOx). The wire is inserted into a larger superconducting loop to form a new device called a phase-slip qubit, with the superconducting layer (the thin wire) sandwiched between insulating layers of empty space (Figure 2).

By tuning the magnetic flux penetrating this loop while scanning microwave frequencies, the researchers detected a band gap in the energy curves for the two flux states of the system (Figure 3), just as theory predicts. This gap is a result of quantum mechanics, which prevents the two states from occupying the same energy level, forcing them to tunnel across the superconducting layer—and through a quantum phase-slip in the narrow wire—to avoid it. While demonstrating conclusively the existence of CQPS, the successful experiment also ushers in a novel class of devices that exploit the unique functionality of quantum phase-slip to forge a new path in superconducting electronics.

###

About RIKEN

RIKEN is Japan's flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.
Reach us on Twitter: @rikenresearch

About the Advanced Science Institute.

The RIKEN Advanced Science Institute (ASI) is an interdisciplinary research institute devoted to fostering creative, curiosity-driven basic research and sowing the seeds for innovative new projects. With more than 700 full-time researchers, the ASI acts as RIKEN's research core, supporting inter-institutional and international collaboration and integrating diverse scientific fields including physics, chemistry, engineering, biology and medical science.

About NEC

NEC Corporation is a leader in the integration of IT and network technologies that benefit businesses and people around the world. By providing a combination of products and solutions that cross utilize the company's experience and global resources, NEC's advanced technologies meet the complex and ever-changing needs of its customers. NEC brings more than 100 years of expertise in technological innovation to empower people, businesses and society. For more information, visit NEC at http://www.nec.com.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.