News Release

Can new diagnostic approaches help assess brain function in unconscious, brain-injured patients?

Peer-Reviewed Publication

Mary Ann Liebert, Inc./Genetic Engineering News

<i>Brain Connectivity </i>

image: Brain Connectivity is the journal of record for researchers and clinicians interested in all aspects of brain connectivity. view more 

Credit: ©2012 Mary Ann Liebert, Inc., publishers

New Rochelle, NY, May 9, 2012—Disorders of consciousness such as coma or a vegetative state caused by severe brain injury are poorly understood and their diagnosis has relied mainly on patient responses and measures of brain activity. However, new functional and imaging-based diagnostic tests that measure communication and signaling between different brain regions may provide valuable information about the potential for consciousness in patients unable to communicate. These innovative approaches are described and compared in a Review article in the groundbreaking neuroscience journal Brain Connectivity, a bimonthly peer-reviewed publication from Mary Ann Liebert, Inc., publishers. The article is available free on the Brain Connectivity website at http://www.liebertpub.com/brain.

Mélanie Boly and coauthors from University of Liège (Belgium), University of Milan (Italy), and University College London (UK) compare the benefits and limitations of three methods for studying the dynamics of brain communication and connectivity in response to internal and external stimulation: functional magnetic resonance imaging f(MRI); transcranial magnetic stimulation (TMS) combined with electroencephalograpy (EEG); and response to neuronal perturbation, measuring, for example, sensory evoked potentials (ERP). They report their findings and propose future research directions in the article "Brain Connectivity in Disorders of Consciousness."

"In recent years, there has been a tremendous interest in gaining a better understanding of the various disorders of consciousness. A variety of methods including fMRI and PET have been used to study these disorders," says Bharat Biswal, PhD, Co-Editor-in-Chief of Brain Connectivity and Associate Professor, University of Medicine and Dentistry of New Jersey. "This article provides a comprehensive analysis using three new and innovative methods to study disorders of consciousness."

###

About the Journal

Brain Connectivity is the journal of record for researchers and clinicians interested in all aspects of brain connectivity. The Journal is under the leadership of Founding and Co-Editors-in-Chief Christopher Pawela, PhD, Assistant Professor, Medical College of Wisconsin, and Bharat Biswal, PhD. It includes original peer-reviewed papers, review articles, point-counterpoint discussions on controversies in the field, and a product/technology review section. To ensure that scientific findings are rapidly disseminated, articles are published Instant Online within 72 hours of acceptance, with fully typeset, fast-track publication within 4 weeks. Tables of content and a sample issue may be viewed on the Brain Connectivity website at http://www.liebertpub.com/brain.

About the Publisher

Mary Ann Liebert, Inc. is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Tissue Engineering, Human Gene Therapy and HGT Methods, and Rejuvenation Research. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 70 journals, newsmagazines, and books is available on the Mary Ann Liebert, Inc. website at http://www.liebertpub.com.

Mary Ann Liebert, Inc.
140 Huguenot St., New Rochelle, NY 10801-5215
http://www.liebertpub.com
Phone: (914) 740-2100
(800) M-LIEBERT
Fax: (914) 740-2101


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.