News Release

Beating the fuel prices: Using yeast for economic production of bioethanol

Peer-Reviewed Publication

BMC (BioMed Central)

Finding renewable and economic sources of energy are one of the most important concerns for the continuation of the human species. New research, published in BioMed Central's open access journal Biotechnology for Biofuels, has produced a novel strain of yeast with improved xylose tolerance and metabolism, and consequently improved ethanol production.

Bioethanol is considered one of cleanest renewable replacements for fossil fuel. However using glucose from crops, such as sugar cane or starch crops, uses up resources which could otherwise be used to produce food. Xylose is the second most abundant sugar in plants (after glucose) and is plentiful in agricultural and wood waste. However the yeast which are most efficient at producing ethanol cannot ferment pentose sugars, such as xylose, and yeast which can ferment xylose are not very good at producing ethanol.

Researchers from Ngee Ann Polytechnic, Singapore, used the process of gene shuffling to integrate the genomes of xylose tolerant P. stipitis and the glucose loving, ethanol tolerant (but xylose intolerant) S. cerevisiae. In the first round of shuffling the P. stipitis genome was transferred into S. cerevisiae. Recombinant strains were selected for their ability to grow on xylose and then for their ability to produce ethanol. In a second round of gene shuffling the S. cerevisiae genome was transferred into the best of these strains and the resulting strains tested for ethanol tolerance.

Anli Geng who led this study explained, "We produced a hybrid yeast, capable of producing bioethanol from xylose, which was also able to survive in high concentrations of ethanol. The main by-product of xylose fermentation was xylitol and by measuring this, along with ethanol production, we found that our hybrid was more efficient at using xylose and in producing ethanol than either of the parent strains. This yeast is only a prototype and further improvement is possible before scale up. However our results show that there is a future in recycling waste vegetation into bioethanol."

###

Notes to editors

1. Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method
Wei Zhang and Anli Geng
Biotechnology for Biofuels (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. Biotechnology for Biofuels is an open access, peer-reviewed online journal featuring high-quality studies describing technological and operational advances in the production of biofuels from biomass.

3. BioMed Central is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.