Public Release: 

Do ovaries continue to produce eggs during adulthood?

A compelling new genetic study tracing the origins of immature egg cells, or 'oocytes', from the embryonic period throughout adulthood adds new information to a growing controversy

PLOS

A compelling new genetic study tracing the origins of immature egg cells, or 'oocytes', from the embryonic period throughout adulthood adds new information to a growing controversy. The notion of a "biological clock" in women arises from the fact that oocytes progressively decline in number as females get older, along with a decades-old dogmatic view that oocytes cannot be renewed in mammals after birth. After careful assessment of data from a recent study published in PLoS Genetics, scientists from Massachusetts General Hospital and the University of Edinburgh argue that the findings support formation of new eggs during adult life; a topic that has been historically controversial and has sparked considerable debate in recent years.

Eggs are formed from progenitor germ cells that exit the mitotic cycle, thereby ending their ability to proliferate through cell division, and subsequently enter meiosis, a process unique to the formation of eggs and sperm which removes one half of the genetic material from each type of cell prior to fertilization.

While traditional thinking has held that female mammals are born with all of the eggs they will ever have, newer research has demonstrated that adult mouse and human ovaries contain a rare population of progenitor germ cells called oogonial stem cells capable of dividing and generating new oocytes. Using a powerful new genetic tool that traces the number of divisions a cell has undergone with age (its 'depth') Shapiro and colleagues counted the number of times progenitor germ cells divided before becoming oocytes; their study was published in PLoS Genetics in February this year.

If traditional thinking held true, all divisions would have occurred prior to birth, and thus all oocytes would exhibit the same depth regardless of age. However, the opposite was found - eggs showed a progressive increase in depth as the female mice grew older.

In their assessment of the work by Shapiro and colleagues - published recently in a PLoS Genetics Perspective article - reproductive biologists Dori Woods, Evelyn Telfer and Jonathan Tilly conclude that the most plausible explanation for these findings is that progenitor germ cells in ovaries continue to divide throughout reproductive life, resulting in production of new oocytes with greater depth as animals age.

Although these investigations were performed in mice, there is emerging evidence that oogonial stem cells are also present in the ovaries of reproductive-age women, and these cells possess the capacity, like their mouse counterparts, to generate new oocytes under certain experimental conditions. While more work is needed to settle the debate over the significance of oocyte renewal in adult mammals, Woods and colleagues emphasize that "the recent work of Shapiro and colleagues is one of the first reports to offer experimental data consistent with a role for postnatal oocyte renewal in contributing to the reserve of ovarian follicles available for use in adult females as they age."

###

Everything published by PLoS Genetics is open access, allowing anyone to download, reuse, reprint, modify, distribute, and/or copy articles, so long as the original authors and source are cited. Please mention PLoS Genetics in your report and use the link(s) below to take readers straight to the online articles. Thank you.

FINANCIAL DISCLOSURE: This work was supported by a Method to Extend Research in Time (MERIT) Award from the National Institute on Aging (NIH R37-AG012279), the Henry and Vivian Rosenberg Philanthropic Fund, and Vincent Memorial Hospital Research Funds. The funders had no role in the preparation of the article.

COMPETING INTERESTS: DCW declares interest as a scientific consultant for OvaScience, Inc. (Cambridge, MA); JLT declares interest in intellectual property described in US Patent 7,955,846 and is a co-founder of OvaScience, Inc.; EET declares no competing interests.

CITATION: Woods DC, Telfer EE, Tilly JL (2012) Oocyte Family Trees: Old Branches or New Stems? PLOS Genet 8(7): e1002848. doi:10.1371/journal.pgen.1002848

CONTACT:

Dr. Jonathan Tilly
Massachusetts General Hospital
55 Fruit Street
Boston, MA 2114
617-724-2182
FAX: 617-726-0561
jtilly@partners.org

Disclaimer

This press release refers to an upcoming article in PLoS Genetics. The release is provided by journal staff, or by the article authors and/or their institutions. Any opinions expressed in this release or article are the personal views of the journal staff and/or article contributors, and do not necessarily represent the views or policies of PLOS. PLOS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

About PLoS Genetics (http://www.plosgenetics.org)

PLoS Genetics reflects the full breadth and interdisciplinary nature of genetics and genomics research by publishing outstanding original contributions in all areas of biology. All works published in PLoS Genetics are open access. Everything is immediately and freely available online throughout the world subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

About the Public Library of Science

The Public Library of Science (PLOS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.