News Release

Our primitive reflexes may be more sophisticated than they appear, study shows

Peer-Reviewed Publication

Imperial College London

Supposedly 'primitive' reflexes may involve more sophisticated brain function than previously thought, according to researchers at Imperial College London.

The Vestibular-Ocular Reflex (or VOR), common to most vertebrates, is what allows us to keep our eyes focused on a fixed point even while our heads are moving. Up until now, scientists had assumed this reflex was controlled by the lower brainstem, which regulates eating, sleeping and other low-level tasks.

Researchers at Imperial's Division of Brain Sciences conducted tests to examine this reflex in left- and right-handed subjects, revealing that handedness plays a key role in the way it operates. This suggests that higher-level functions in the cortex, which govern handedness, are involved in the control of primitive reflexes such as the VOR.

The research, published in The Journal of Neuroscience, involved seating volunteers in a motorised chair which was then spun around at a speed of one revolution every four seconds. This allowed the experimenters to study the VOR by measuring the time it took for the eyes to adjust to the spinning motion. The subjects were then presented with what are known as bistable visual phenomena, optical illusions which appear to flip between two images. Famous examples include the duck which resembles a rabbit, and the cube outline which appears to come out of and go into the page simultaneously.

Scientists already know that this bistable perception is controlled by a part of the cortex which governs more complex, decision-based tasks. Because of this, researcher Qadeer Arshad and his colleagues did not expect to find any link between the two processes.

They were surprised to find that processing bistable phenomena disrupted people's ability to stabilise their gaze, following rightward rotation in right handers and leftward rotation in left handers. Arshad said "This is the first time that anything of this kind has been shown. Up until now, the Vestibular-Ocular Reflex was considered a low-level reflex, not even approaching higher-order brain function. Now it seems that this primitive reflex was specialised into the cortex, the part of the brain which governs our sense of direction."

This study could help scientists understand why some people become dizzy through experiencing purely visual stimuli, such as flickering lights or busy supermarket aisles. Professor Adolfo Bronstein, a co-author on the paper, said "Most causes of dizziness start with an inner ear - or vestibular - disorder but this initial phase tends to settle quite rapidly. In some patients, however, dizziness becomes a problematic long term problem and their dizziness becomes visually induced. The experimental set-up we used would be ideally suited to help us understand how visual stimuli could lead to long-term dizziness. In fact, we have already carried out research at Imperial around using complex visual stimuli to treat patients with long-term dizziness"

###

The research was funded by the UK Medical Research Council.

For further information please contact:

Gilead Amit
Covering Research Media Officer
Imperial College London
Out of hours duty press officer: 44-0-7803-886-248

Notes to editors:

1. "Handedness-Related Cortical Modulation of the Vestibular-Ocular Reflex" The Journal of Neuroscience, published in print Wednesday 13 February 2013
Qadeer Arshad, Yuliya Nigmatullina and Adolfo M. Bronstein
Academic Department of Neuro-Otology, Division of Brain Sciences, Imperial College London, London W6 8RF, UK.

A copy of the published paper: http://www.jneurosci.org/content/33/7/3221.full

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Website: www.imperial.ac.uk


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.