News Release

New imaging technique to visualize bio-metals and molecules simultaneously

Peer-Reviewed Publication

RIKEN

Photograph of GREI-II

image: Dr. Shuichi Enomoto, Dr. Shinji Motomura and colleagues, RIKEN Center for Life Science Technologies, have developed a gamma-ray imaging camera enabling them to detect the gamma-rays emitted by multiple bio-metal elements in the body and study their behavior. Their second prototype of the system, called GREI–II and presented today in the Journal of Analytical Atomic Spectrometry, enables them to visualize multiple bio-metal elements more than 10 times faster than before, and to do so simultaneously with positron emission tomography (PET). view more 

Credit: RIKEN

Metal elements and molecules interact in the body but visualizing them together has always been a challenge. Researchers from the RIKEN Center for Life Science Technologies in Japan have developed a new molecular imaging technology that enables them to visualize bio-metals and bio-molecules simultaneously in a live mouse. This new technology will enable researchers to study the complex interactions between metal elements and molecules in living organisms.

Metal elements such as zinc, iron and copper are present in trace amounts in the body and play an important role in myriad biological processes including gene expression, signal transduction and metabolic reactions. Abnormalities in the behaviour of these elements often reflect abnormalities in associated bio-molecules and studying them together can offer great insight into many biological processes.

Bio-molecules can be visualized in living organisms using positron emission tomography (PET), a widely used nuclear medical molecular-imaging technique.

Dr. Shuichi Enomoto, Dr. Shinji Motomura and colleagues, from the RIKEN Center for Life Science Technologies have developed a gamma-ray imaging camera enabling them to detect the gamma-rays emitted by multiple bio-metal elements in the body and study their behavior.

Their second prototype of the system, called GREI–II and presented today in the Journal of Analytical Atomic Spectrometry, enables them to visualize multiple bio-metal elements more than 10 times faster than before, and to do so simultaneously with positron emission tomography (PET).

In the study, the researchers were able to visualise two radioactive agents injected in a tumor-bearing mouse, as well as an anti-tumor antibody labelled with a PET molecular probe agent, simultaneously in the live mouse.

This new revolutionary technology is expected to offer new insights into the relationships between bio-metal elements and associated bio-molecules, and the roles they play in diseases such as diabetes and cancer.

###

Fore more information please contact:

Juliette Savin
RIKEN Global relations Office
pr@riken.jp
Tel: +81-(0)48-462-1225
http://www.riken.jp/

Pictures and a copy of the paper are available on request.

Reference

"Improved imaging performance of semiconductor Compton camera GREI makes for a new methodology to integrate bio-metal analysis and molecular imaging technology in living organisms" Shinji Motomura et al. JAAS 2013 DOI:

About RIKEN

RIKEN is Japan's flagship research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

Website: http://www.riken.jp

Find us on Twitter at @riken_en

About the Center for Life Science Technologies

The center aims to develop key technologies for breakthroughs in the medical and pharmaceutical applications of life science. The center promotes research on biomolecules and life science technologies with a focus on three specific areas: designing molecular structures at the atomic level, manipulating molecular function at the cellular level and tracing molecular dynamics at the whole-body level.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.