News Release

Researchers estimate over 2 million deaths annually from air pollution

Peer-Reviewed Publication

IOP Publishing

Over two million deaths occur each year as a direct result of human-caused outdoor air pollution, a new study has found.

In addition, while it has been suggested that a changing climate can exacerbate the effects of air pollution and increase death rates, the study shows that this has a minimal effect and only accounts for a small proportion of current deaths related to air pollution.

The study, which has been published today, 12 July, in IOP Publishing's journal Environmental Research Letters, estimates that around 470,000 people die each year because of human-caused increases in ozone.

It also estimates that around 2.1 million deaths are caused each year by human-caused increases in fine particulate matter (PM2.5) – tiny particles suspended in the air that can penetrate deep into the lungs, causing cancer and other respiratory disease.

Co-author of the study, Jason West, from the University of North Carolina, said: "Our estimates make outdoor air pollution among the most important environmental risk factors for health. Many of these deaths are estimated to occur in East Asia and South Asia, where population is high and air pollution is severe."

According to the study, the number of these deaths that can be attributed to changes in the climate since the industrial era is, however, relatively small. It estimates that a changing climate results in 1500 deaths due to ozone and 2200 deaths related to PM2.5 each year.

Climate change affects air pollution in many ways, possibly leading to local increases or decreases in air pollution. For instance, temperature and humidity can change the reaction rates which determine the formation or lifetime of a pollutant, and rainfall can determine the time that pollutants can accumulate.

Higher temperatures can also increase the emissions of organic compounds from trees, which can then react in the atmosphere to form ozone and particulate matter.

"Very few studies have attempted to estimate the effects of past climate change on air quality and health. We found that the effects of past climate change are likely to be a very small component of the overall effect of air pollution," continued West.

In their study, the researchers used an ensemble of climate models to simulate the concentrations of ozone and PM2.5 in the years 2000 and 1850. A total of 14 models simulated levels of ozone and six models simulated levels of PM2.5.

Previous epidemiological studies were then used to assess how the specific concentrations of air pollution from the climate models related to current global mortality rates.

The researchers' results were comparable to previous studies that have analysed air pollution and mortality; however, there was some variation depending on which climate model was used.

"We have also found that there is significant uncertainty based on the spread among different atmospheric models. This would caution against using a single model in the future, as some studies have done," continued West.

###

From Friday 12 July, this paper can be downloaded from http://iopscience.iop.org/1748-9326/8/3/034005/article.

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer, Michael Bishop:

Tel: 0117 930 1032
E-mail: Michael.bishop@iop.org

IOP Publishing Journalist Area

2. The IOP Publishing Journalist Area (http://journalists.iop.org/journalistLogin) gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos. In addition to this, a weekly news digest is uploaded into the Journalist Area every Friday, highlighting a selection of newsworthy papers set to be published in the following week.

Login details also give free access to IOPscience, IOP Publishing's journal platform.

To apply for a free subscription to this service, please email Michael Bishop, IOP Press Officer, michael.bishop@iop.org, with your name, organisation, address and a preferred username.

Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change

3. The published version of the paper 'Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change' (Raquel A Silva et al 2013 Environ. Res. Lett. 8 034005) will be freely available online from Friday 12 July. It will be available at http://iopscience.iop.org/1748-9326/8/3/034005/article.

Environmental Research Letters

4. Environmental Research Letters is an open access journal that covers all of environmental science, providing a coherent and integrated approach including research articles, perspectives and editorials.

IOP Publishing

5. IOP Publishing provides a range of journals, magazines, websites and services that enable researchers and research organisations to reach the widest possible audience for their research.

We combine the culture of a learned society with global reach and highly efficient and effective publishing systems and processes. With offices in the UK, US, Germany, China and Japan, and staff in many other locations including Mexico and Russia, we serve researchers in the physical and related sciences in all parts of the world.

IOP Publishing is a wholly owned subsidiary of the Institute of Physics. The Institute is a leading scientific society promoting physics and bringing physicists together for the benefit of all. Any profits generated by IOP Publishing are used by the Institute to support science and scientists in both the developed and developing world. Go to ioppublishing.org.

The Institute of Physics

6. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application. We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications. Go to http://www.iop.org


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.