News Release

Patient warming systems may affect ventilation in OR, study suggests

Concerns about possible impact on infection risk -- but more evidence needed before changing practice

Peer-Reviewed Publication

Wolters Kluwer Health

San Francisco, CA. (July 24, 2013) – Forced-air systems used to keep patients warm during surgery may affect the performance of operating room (OR) ventilation systems—potentially increasing exposure to airborne contaminants, reports a study in the August issue of Anesthesia & Analgesia, official journal of the International Anesthesia Research Society (IARS).

By comparison, conductive warming systems don't disrupt ventilation airflows over the surgical site, according to the report by Dr Kumar G. Belani of University of Minnesota and colleagues. But an accompanying editorial notes that there's not yet enough evidence to change current practice with regard to patient warming in the OR.

Patient Warming Affects OR Ventilation Airflow The researchers compared the effects of two different types of patient warming systems on airflow in the OR. Modern ORs use "sophisticated ventilation systems to create localized zones of highly filtered air over the surgical site," according to Dr Belani and coauthors.

For the experimental study, the researchers set up an OR as for knee replacement surgery, using a mannequin. They then assessed the performance of the OR ventilation system using "neutrally buoyant detergent bubbles," which made it possible to visualize airflow patterns under different conditions.

Airflow was compared using a forced-air warming system, which distributes heated air under the surgical drapes and over the patient; and a conductive warming system (such as heated water blankets), which applies direct heat to the patient's skin.

Forced-air warming "generated hot air convection currents that mobilized bubbles over the anesthesia site and into the surgical site," Dr Belani and colleagues write. The average "bubble count" in the simulated surgical field was more than 100 with the forced-air warmer, compared to about 0.50 with a conductive warming system.

The convection currents created by the forced-air system drew air from under the surgical drapes and into the surgical site. The concern is that this could mobilize bacteria or other contaminants from nonsterile areas, or interfere with the ventilation system's ability to clear contaminants from the surgical site.

Too Early to Assume Increased Infection Risk? The use of " downward displacement" OR ventilation systems had previously been shown to reduce exposure to microbes and infection rates during certain types of surgery. But more recent studies have found no reduction in infection rates. The new study was designed to test whether forced-air warming systems—a relatively recent introduction to ORs—could be affecting ventilation performance.

The results suggest that forced-air patient warming systems may indeed affect airflows in the OR, potentially increasing exposure to bacteria and other contaminants during surgery. Dr Belani and coauthors conclude, "These findings warrant future research into the effects of forced air warming excess heat on clinical outcomes during contamination-sensitive surgery."

In the editorial, Drs Charles Weissman and W. Bosseau Murray note that the findings provide only indirect evidence of potential infection risk, in a simulated setting. That's in contrast to the known benefits of preventing drops in body temperature during surgery. Pending further research, Drs Weissman and Murray write, "[T]he prudent course…might be to continue with the presently proven successful warming therapies, but keep an open mind about the possible future need to change practice."

###

Read the article in Anesthesia & Analgesia. The journal is published by Lippincott Williams & Wilkins, part of Wolters Kluwer Health.

About Anesthesia & Analgesia

Anesthesia & Analgesia was founded in 1922 and was issued bi-monthly until 1980, when it became a monthly publication. A&A is the leading journal for anesthesia clinicians and researchers and includes more than 500 articles annually in all areas related to anesthesia and analgesia, such as cardiovascular anesthesiology, patient safety, anesthetic pharmacology, and pain management. The journal is published on behalf of the IARS by Lippincott Williams & Wilkins (LWW), a division of Wolters Kluwer Health.

About the IARS

The International Anesthesia Research Society is a nonpolitical, not-for-profit medical society founded in 1922 to advance and support scientific research and education related to anesthesia, and to improve patient care through basic research. The IARS contributes nearly $1 million annually to fund anesthesia research; provides a forum for anesthesiology leaders to share information and ideas; maintains a worldwide membership of more than 15,000 physicians, physician residents, and others with doctoral degrees, as well as health professionals in anesthesia related practice; sponsors the SmartTots initiative in partnership with the FDA; and publishes the monthly journal Anesthesia & Analgesia in print and online.

About Wolters Kluwer Health

Wolters Kluwer Health is a leading global provider of information, business intelligence and point-of-care solutions for the healthcare industry. Serving more than 150 countries and territories worldwide, Wolters Kluwer Health's customers include professionals, institutions and students in medicine, nursing, allied health and pharmacy. Major brands include Health Language®, Lexicomp®, Lippincott Williams & Wilkins, Medicom®, Medknow, Ovid®, Pharmacy OneSource®, ProVation® Medical, and UpToDate®.

Wolters Kluwer Health is part of Wolters Kluwer, a market-leading global information services company. Wolters Kluwer had 2012 annual revenues of €3.6 billion ($4.6 billion), employs approximately 19,000 people worldwide, and maintains operations in over 40 countries across Europe, North America, Asia Pacific, and Latin America. Follow our official Twitter handle: @WKHealth.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.