News Release

Moving genes have scientists seeing spots

Live imaging reveals for the first time gene motion in cell nucleus

Peer-Reviewed Publication

Norwich BioScience Institutes

Live Imaging Reveals Gene Motion

image: This is the JIC research team with the microscope used for live imaging. Left to right are Dr. Danling Zhu, professor Caroline Dean and Stefanie Rosa. view more 

Credit: John Innes Centre photography

An international team of scientists led by the UK's John Innes Centre and including scientists from Australia, Japan, the US and France has perfected a way of watching genes move within a living plant cell.

Using this technique scientists watched glowing spots, which marked the position of the genes, huddle together in the cold as the genes were switched "off".

"The movement of genes within the nucleus, captured here using live imaging, seems to play a role in switching their activity on and off", said first author Stefanie Rosa from the John Innes Centre.

"In our study, we tracked genes involved in accelerating flowering in response to cold, but the movement of genes could be important in all areas of biology."

"Studying gene motion could improve our understanding of how environmental cues and nurture impact on nature and gene expression."

The research will be published on Thursday in the international journal Genes & Development.

"What is remarkable about this finding is that we saw genes move in response to changes in the environment, and that this movement seems to be involved in genetic control," said Associate Professor Josh Mylne.

He initiated the approach almost 10 years ago as he embarked on his career at the John Innes Centre and is now .

"The gene we studied (FLC) allows plants to respond to changes in the season. When FLC gets turned off (by cold), the plant starts to make flowers instead of leaves. We knew FLC was switched off by cold, but we had no idea that FLC genes would congregate as they get switched off."

Previous to this research, plant genes were studied by cutting up plants, killing the cells and fixing them to glass slides. Researchers can now watch genes move inside living plants.

Although the study is of interest to researchers by providing an understanding of how FLC moves as it is turned off, it can be applied to any gene in plants or animals. The major benefit of this approach is that it allows researchers to monitor a gene in whole, living organisms.

"What we want to know now is what is happening at these sites where the genes are congregating," Associate Professor Mylne said. "Are the genes going somewhere special inside the cell? What takes them there and how do the chromosomes move and let the genes congregate? How many other genes congregate like this when they get turned off?

"There are so many new questions this discovery will help us answer."

###

This work was supported in part by the Biotechnology and Biological Sciences Research Council and the European Research Council. It is available at: http://www.genesdev.org/cgi/doi/10.1101/gad.221713.113


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.