News Release

Bismuth-carrying nanotubes show promise for CT scans

Rice-led collaboration finds element shines as contrast agent for tracking stem cells

Peer-Reviewed Publication

Rice University

Agent 1

image: An electron microscope image shows bismuth ions (dark lines) sitting inside carbon nanotubes. The material created at Rice University is a contrast agent that may allow clinicians to track the progress of stem cells in the body with a CT scanner. view more 

Credit: Eladio Rivera/Rice University

HOUSTON – (Sept. 4, 2013) – Scientists at Rice University have trapped bismuth in a nanotube cage to tag stem cells for X-ray tracking.

Bismuth is probably best known as the active element in a popular stomach-settling elixir and is also used in cosmetics and medical applications. Rice chemist Lon Wilson and his colleagues are inserting bismuth compounds into single-walled carbon nanotubes to make a more effective contrast agent for computed tomography (CT) scanners.

Details of the work by Wilson's Rice team and collaborators at the University of Houston, St. Luke's Episcopal Hospital, and the Texas Heart Institute appear in the Journal of Materials Chemistry B.

This is not the first time bismuth has been tested for CT scans, and Wilson's lab has been experimenting for years with nanotube-based contrast agents for magnetic resonance imaging (MRI) scanners. But this is the first time anyone has combined bismuth with nanotubes to image individual cells, he said.

"At some point, we realized no one has ever tracked stem cells, or any other cells that we can find, by CT," Wilson said. "CT is much faster, cheaper and more convenient, and the instrumentation is much more widespread (than MRI). So we thought if we put bismuth inside the nanotubes and the nanotubes inside stem cells, we might be able to track them in vivo in real time."

Experiments to date confirm their theory. In tests using pig bone marrow-derived mesenchymal stem cells, Wilson and lead author Eladio Rivera, a former postdoctoral researcher at Rice, found that the bismuth-filled nanotubes, which they call Bi@US-tubes, produce CT images far brighter than those from common iodine-based contrast agents.

"Bismuth has been thought of before as a CT contrast agent, but putting it in nanotube capsules allows us to get them inside cells in high concentrations," Wilson said. "That lets us take an X-ray image of the cell."

The capsules are made from a chemical process that cuts and purifies the nanotubes. When the tubes and bismuth chloride are mixed in a solution, they combine over time to form Bi@US-tubes.

The nanotube capsules are between 20 and 80 nanometers long and about 1.4 nanometers in diameter. "They're small enough to diffuse into the cell, where they then aggregate into a clump about 300 nanometers in diameter," he said. "We think the surfactant used to suspend them in biological media is stripped off when they pass through the cell membrane. The nanotubes are lipophilic, so when they find each other in the cell they stick together."

Wilson said his team's studies showed stem cells readily absorb Bi@US-tubes without affecting their function. "The cells adjust over time to the incorporation of these chunks of carbon and then they go about their business," he said.

Bi@US-tubes have clear advantages over commonly used iodine-based contrast agents, Wilson said. "Bismuth is a heavy element, down near the bottom of the periodic table, and more effective at diffracting X-rays than almost anything else you could use," he said. Once the bismuth is encapsulated in the nanotubes, the agent can produce high contrast in very small concentrations. The nanotube surfaces can be modified to improve biocompatibility and their ability to target certain types of cells. They can also be modified for use with MRI, positron emission tomography and electron paramagnetic resonance imaging systems.

The Rice lab is working to double the amount of bismuth in each nanotube. "Bismuth ions appear to get into the nanotubes by capillary action, and we think we can improve on the process to at least double the contrast, maybe more," he said. "Then we would like to combine both bismuth and gadolinium into one nanotube to produce a bimodal contrast agent that can be tracked with both MRI and CT scanners."

###

Co-authors of the study are research scientist Lesa Tran, graduate student Mayra Hernández-Rivera, former postdoctoral researcher Diana Yoon, and Antonios Mikos, the Louis Calder Professor of Bioengineering and Chemical and Biomolecular Engineering, all of Rice; Irene Rusakova, a senior research scientist at the Texas Center for Superconductivity at the University of Houston; Benjamin Cheong, a doctor in the Department of Radiology, St. Luke's Episcopal Hospital, Houston; and research scientist Maria da Graça Cabreira-Hansen; James Willerson, president and medical director, and Emerson Perin, director of clinical research for cardiovascular medicine, all of the Texas Heart Institute.

The Robert A. Welch Foundation, the National Institutes of Health, and the National Science Foundation supported the research.

Read the abstract at http://pubs.rsc.org/en/content/articlelanding/2013/tb/c3tb20742k

This news release can be found online at http://news.rice.edu/2013/09/04/bismuth-carrying-nanotubes-show-promise-for-ct-scans/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Wilson Group: http://www.ruf.rice.edu/~ljwgroup/index.html

The Mikos Research Group: http://www.ruf.rice.edu/~mikosgrp/

Texas Heart Institute: http://texasheart.org/index.cfm

Texas Center for Superconductivity at the University of Houston: http://www.tcsuh.com

St. Luke's Episcopal Hospital: http://www.stlukeshouston.com

Images for download:

http://news.rice.edu/wp-content/uploads/2013/09/0909_AGENT-1-web.jpg

An electron microscope image shows bismuth ions (dark lines) sitting inside carbon nanotubes. The material created at Rice University is a contrast agent that may allow clinicians to track the progress of stem cells in the body with a CT scanner. (Credit: Eladio Rivera/Rice University)

http://news.rice.edu/wp-content/uploads/2013/09/0909_AGENT-2-web.jpg

Images of mesenchymal stem cells taken with a computed tomography (CT) scanner show strong contrast between cells tagged with nanotubes that don't include bismuth (left) and those that do (right). (Credit: Eladio Rivera/Rice University)

http://news.rice.edu/wp-content/uploads/2013/09/0909_AGENT-3-web.jpg

An X-ray image of unlabeled mesenchymal stem cells in test tubes shows the dramatic difference between those tagged with nanotubes that don't include bismuth (left) and those that do (right). The technique developed at Rice University shows promise for tracking live stem cells in the body. (Credit: Eladio Rivera/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/AboutRiceU.

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.