Public Release: 

Historic trends predict future global reforestation unlikely

Increasing crop yield and decreasing food consumption needed to slow, reverse deforestation

PLOS

IMAGE?

IMAGE: Increasing crop yield and decreasing food consumption are needed to slow or reverse deforestation. view more

Credit: Madhur Anand

Feeding a growing global population while also slowing or reversing global deforestation may only be possible if agricultural yields rise and/or per capita food consumption declines over the next century, according to historic global food consumption and land use trends. Published October 9, 2013, in the open-access journal PLOS ONE by Chris Pagnutti, Chris Bauch, and Madhur Anand from the University of Guelph, this research underscores the long-term challenge of feeding everyone while still conserving natural habitat.

To predict future global forest trends, the scientists used several centuries of global land use data from the United Nations Food and Agriculture Organization and other sources. They incorporated this data into their mathematical model designed to capture how land use transitions, including deforestation and reforestation, are driven by three key factors: agricultural yield, per capita food consumption, and world population change over time.

Based on historic trends that show growing food consumption outpacing rising agricultural yields, global forest cover is predicted to decline about 10% further, stabilizing at roughly 22% forest cover over the next century. Unless new technological advances increase yields, or strategies to decrease food consumption are introduced, a switch to global reforestation remains unlikely. Under an alternative scenario where food production and consumption stabilize, reforestation could increase global forest cover to about 35% if it occurs within the next 70 years. Additionally, researchers found that short-term trends in reforestation, deforestation, and abandoned agricultural land may play a role in understanding long-term forest trends.

The results suggest that equal effort should be directed toward finding ways to boost agricultural yield, disseminate those technologies to developing countries, and decrease per capita consumption, thus reducing land use pressures. Anand elaborates, "What is new here is the provision of a set of quantitative guidelines (the mathematical model outputs) that demonstrate exactly how much improvements to agricultural yield or decreases in consumption will affect forest cover dynamics in time. Not every outcome was predictable to us before we had this model, especially the case of the 'false forest transition'."

###

Citation: Pagnutti C, Bauch CT, Anand M (2013) Outlook on a Worldwide Forest Transition. PLOS ONE 8(10): e75890. doi:10.1371/journal.pone.0075890

Financial Disclosure: This work was funded by the Natural Sciences and Engineering Council of Canada (Discovery grants program) to MA and CB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interest Statement: The authors have declared that no competing interests exist.

PLEASE LINK TO THE SCIENTIFIC ARTICLE IN ONLINE VERSIONS OF YOUR REPORT (URL goes live after the embargo ends): http://dx.plos.org/10.1371/journal.pone.0075890

Disclaimer: This press release refers to upcoming articles in PLOS ONE. The releases have been provided by the article authors and/or journal staff. Any opinions expressed in these are the personal views of the contributors, and do not necessarily represent the views or policies of PLOS. PLOS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

About PLOS ONE: PLOS ONE is the first journal of primary research from all areas of science to employ a combination of peer review and post-publication rating and commenting, to maximize the impact of every report it publishes. PLOS ONE is published by the Public Library of Science (PLOS), the open-access publisher whose goal is to make the world's scientific and medical literature a public resource.

All works published in PLOS ONE are Open Access. Everything is immediately available--to read, download, redistribute, include in databases and otherwise use--without cost to anyone, anywhere, subject only to the condition that the original authors and source are properly attributed. For more information about PLOS ONE relevant to journalists, bloggers and press officers, including details of our press release process and our embargo policy, see the everyONE blog at http://everyone.plos.org/media.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.