Public Release: 

Antidepressant drug induces a juvenile-like state in neurons of the prefrontal cortex

Fujita Health University, ICMS

For long, brain development and maturation has been thought to be a one-way process, in which plasticity diminishes with age. The possibility that the adult brain can revert to a younger state and regain plasticity has not been considered, often. In a paper appearing on November 4 in the online open-access journal Molecular Brain, Dr. Tsuyoshi Miyakawa and his colleagues from Fujita Health University show that chronic administration of one of the most widely used antidepressants fluoxetine (FLX, which is also known by trade names like Prozac, Sarafem, and Fontex and is a selective serotonin reuptake inhibitor) can induce a juvenile-like state in specific types of neurons in the prefrontal cortex of adult mice.

In their study, FLX-treated adult mice showed reduced expression of parvalbumin and perineuronal nets, which are molecular markers for maturation and are expressed in a certain group of mature neurons in adults, and increased expression of an immature marker, which typically appears in developing juvenile brains, in the prefrontal cortex. These findings suggest the possibility that certain types of adult neurons in the prefrontal cortex can partially regain a youth-like state; the authors termed this as induced-youth or iYouth. These researchers as well as other groups had previously reported similar effects of FLX in the hippocampal dentate gyrus, basolateral amygdala, and visual cortex, which were associated with increased neural plasticity in certain types of neurons. This study is the first to report on "iYouth" in the prefrontal cortex, which is the brain region critically involved in functions such as working memory, decision-making, personality expression, and social behavior, as well as in psychiatric disorders related to deficits in these functions.

Network dysfunction in the prefrontal cortex and limbic system, including the hippocampus and amygdala, is known to be involved in the pathophysiology of depressive disorders. Reversion to a youth-like state may mediate some of the therapeutic effects of FLX by restoring neural plasticity in these regions. On the other hand, some non-preferable aspects of FLX-induced pseudo-youth may play a role in certain behavioral effects associated with FLX treatment, such as aggression, violence, and psychosis, which have recently received attention as adverse effects of FLX. Interestingly, expression of the same molecular markers of maturation, as discussed in this study, has been reported to be decreased in the prefrontal cortex of postmortem brains of patients with schizophrenia. This raises the possibility that some of FLX's adverse effects may be attributable to iYouth in the same type of neurons in this region. Currently, basic knowledge on this is lacking, and there are several unanswered questions like: What are the molecular and cellular mechanisms underlying iYouth? What are the differences between actual youth and iYouth? Is iYouth good or bad? Future studies to answer these questions could potentially revolutionize the prevention and/or treatment of various neuropsychiatric disorders and aid in improving the quality of life for an aging population.

###

Embargo: 15:00 London time (GMT)/11:00 US Eastern Time on November 4/0:00 Japanese time on November 5, 2013

Title: Chronic fluoxetine treatment reduces parvalbumin expression and perineuronal nets in gamma-aminobutyric acidergic interneurons of the frontal cortex in adult mice

View this article at: http://www.molecularbrain.com

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open-access policy.

Author contact

Tsuyoshi Miyakawa (Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan; Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan) Tel: +81 562 93 9375; E-mail: miyakawa@fujita-hu.ac.jp

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.