News Release

Simplifying an ultrafast laser offers better control

New laser amplification concept developed at INRS

Peer-Reviewed Publication

Institut national de la recherche scientifique - INRS

This news release is available in French.

Going back to the drawing board to find a way to overcome the technical limitations of their laser, a team led by François Légaré, professor at the INRS Énergie Matériaux Télécommunications Research Centre, developed a new concept offering a simpler laser design, control over new parameters, and excellent performance potential. Called "frequency domain optical parametric amplification" (FOPA), the concept supersedes traditional time domain amplification schemes that have been the linchpin of ultrafast laser science for 20 years. The new concept is explained in detail in an open access article in Nature Communications.

For researchers, capturing images of a moving electron is the holy grail of molecular imaging. But in their efforts to generate a light pulse that is sufficiently short and powerful to capture such an image, researchers have been held back by the fundamental limitations and unsatisfactory performance of lasers. "Our goal is to capture images of a chemical reaction using high spatial and temporal resolution," explained François Légaré, speaking at the TEDxConcordia event. "I want to shoot a video where you can actually see the atoms dancing in a chemical reaction."

Amplifying laser pulses in the frequency domain rather than the time domain also overcomes certain technical constraints, among them the ability to access multiple different frequencies simultaneously and control them independently. In addition, higher light pulse energy can be achieved with the new concept. "Our approach holds promise for high-power, broad spectrum, few-cycle laser sources," said the young researcher.

In the proof of concept presented in the Nature Communications article, Professor Légaré's team demonstrated that FOPA generates pulses comparable to lasers using time domain amplification in the given conditions: 1.5 mJ, 1.8 microns, 12 fs duration corresponding to 2 optical cycles. Research associate and lead author Bruno Schmidt points out that not only does the FOPA approach open up access to parameters that could not previously be controlled, it also eliminates many complex assembly components. "The logic underpinning this concept could be applied to other types of applications," he added, "so we believe it will allow us to look at nonlinear optics in a whole new light." Optimistic and ambitious, Bruno Schmidt plans to market the innovations stemming from his work, even founding his own company, few-cycle Inc.

###

About this publication

The article entitled "Frequency domain optical parametric amplification" appeared in the Nature Communications journal on May 7, 2014. The work of François Légaré, professor and researcher at the INRS Énergie Matériaux Télécommunications Research Centre, was made possible by financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC); the Canadian Institute for Phototonic Innovations (CIPI); Fonds de recherche du Québec – Nature et technologies; Quebec's Ministère du Développement économique, de l'Innovation et de l'Exportation; and the Defense Advanced Research Projects Agency's Program in Ultrafast Laser Science and Engineering (DARPA PULSE).

About INRS

Institut national de recherche scientifique (INRS) is a graduate research and training university. One of Canada's leading research universities in terms of grants per professor, INRS brings together some 150 professors and close to 700 students and postdoctoral fellows in its centres in Montreal, Quebec City, Laval, and Varennes. Conducting fundamental research essential to the advancement of science in Quebec as well as internationally, INRS research teams also play a critical role in developing concrete solutions to problems facing our society.

Information:

François Légaré, Professor
Énergie Matériaux Télécommunications Research Centre, INRS
514-228-6871, francois.legare@emt.inrs.ca


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.