Public Release: 

Stem cell and clinical research advances to be presented at NYSCF's Ninth Annual Conference

New York Stem Cell Foundation

Leaders in translational stem cell research from around the world will present the latest advances in stem cell science that are leading to better treatments and cures to disease and injury at The New York Stem Cell Foundation's Ninth Annual Translational Stem Cell Research Conference.

The opening day of the conference includes a panel discussion on large scale, big data stem cell and genetic initiatives moderated by Susan L. Solomon, JD, CEO and Co-founder of The New York Stem Cell Foundation (NYSCF), with panelists George Church, PhD, Harvard Medical School; John Greally, PhD, Albert Einstein College of Medicine; Scott Noggle, PhD, The NYSCF Research Institute; and Eric Schadt, PhD, the Icahn School of Medicine at Mount Sinai.

Later that day, a discussion on neurodegeneration includes Kevin Eggan, PhD, Harvard University and the NYSCF Research Institute, who will discuss his research identifying an existing drug candidate that may be of use treating ALS and is entering clinical trials in the coming year. The following session on cell reprogramming and cancer includes Michael Milone, MD, PhD, University of Pennsylvania, who will discuss recent research results from his lab and his colleagues including the results of a clinical trial for leukemia featured in The New York Times last week. The first day closes with a conversation on personalized medicine featuring Dieter Egli, PhD, NYSCF - Robertson Investigator at the NYSCF Research Institute and Columbia University; Rudolf Jaenisch, MD, The Whitehead Institute; and Sir Ian Wilmut, FRS, FRSE, University of Edinburgh.

On October 23, the day will begin with remarks by Kenneth Adams and Kyle Kimball, President of the Empire State Development Corporation and President of the New York City Economic Development Corporation, respectively. The session on translating innovation from the laboratory to the clinic features Stephen Chang, PhD, of the NYSCF Research Institute and Richard Pearse, PhD, of the Harvard Catalyst and eagle-i Network who will discuss their collaboration on the first publicly available induced pluripotent stem cell database. The day will close with a presentation on induced neuronal cells and cell transdifferentiation from the 2014 NYSCF - Robertson Stem Cell Prize recipient, Marius Wernig, MD, PhD, of Stanford University School of Medicine.

Sir Ian Wilmut will give the keynote address on October 22nd and Dr. Rudolf Jaenisch will give the keynote address on the last day of the conference.

The full conference agenda can be found at


About The New York Stem Cell Foundation

The New York Stem Cell Foundation (NYSCF) is an independent organization founded in 2005 to accelerate cures and better treatments for patients through stem cell research. NYSCF employs over 45 researchers at the NYSCF Research Institute, located in New York, and is an acknowledged world leader in stem cell research and in developing pioneering stem cell technologies, including the NYSCF Global Stem Cell ArrayTM. Additionally, NYSCF supports another 70 researchers at other leading institutions worldwide through its Innovator Programs, including the NYSCF - Druckenmiller Fellowships and the NYSCF - Robertson Investigator Awards. NYSCF focuses on translational research in a model designed to overcome the barriers that slow discovery and replaces silos with collaboration.

NYSCF researchers have achieved several major discoveries in the field, including: the first diploid stem cell line from a patient with type 1 diabetes using somatic cell nuclear transfer in April 2014; the first stem cell-derived beta cell model that accurately reflects the features of a genetic form of diabetes in June 2013; the generation of functional, immune-matched bone substitutes from patients' skin cells (featured in The Wall Street Journal in May 2013); the discovery of a clinical cure to prevent transmission of maternally inherited mitochondrial diseases in December 2012; the derivation of the first-ever patient specific embryonic stem cell line (#1 Medical Breakthrough of 2011 by Time magazine); the discovery of a new way to reprogram stem cells; and, the creation of the first disease model from induced pluripotent stem cells (also named the #1 Medical Breakthrough by Time magazine in 2008). More information is available at

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.