News Release

Biomarker discovery sheds new light on heart attack risk of arthritis drugs

Peer-Reviewed Publication

Imperial College London

A class of drug for treating arthritis - all but shelved over fears about side effects - may be given a new lease of life, following the discovery of a possible way to identify which patients should avoid using it.

The new study, led by Imperial College London and published in the journal Circulation, sheds new light on the 10-year-old question of how COX-2 inhibitors - a type of non-steroidal anti-inflammatory drug (NSAID) - can increase the risk of heart attack in some people.

NSAIDs - which include very familiar drugs such as ibuprofen, diclofenac and aspirin - are widely-used treatments for debilitating inflammatory conditions such as arthritis as well as being used for general pain relief worldwide. NSAIDs are also being investigated for their potential to prevent cancer. COX-2 inhibitors, which include Vioxx and Celebrex, were developed in the 1990s to avoid the risk of stomach ulcers caused by some NSAIDs, but after they were linked to an increased risk of heart attacks, they rapidly fell out of favour and some brands, including Vioxx, were withdrawn.

The new study, in mice and human volunteers, was led by Professor Jane Mitchell and Dr James Leiper. Professor Mitchell, from the National Heart and Lung Institute at Imperial, said: "Although the majority of arthritis sufferers could safely use COX-2 inhibitors, the fear of heart attacks has left some patients confused and worried about their medication and GPs nervous about prescribing them. This problem is made worse because we now know that most NSAIDs, not just COX-2 selective drugs, carry a similar risk of heart attacks in some patients.

"If we could identify which people have an increased risk, these patients could be offered more appropriate treatments - and we can start to look at ways of reducing or averting the risk entirely."

NSAIDs work by preventing the production of prostaglandins - the chemical messengers in tissues and joints that trigger pain and inflammation. Prostaglandins are produced by two different enzymes, known as COX-1 and COX-2, which are found at sites of inflammation as well as in other sites around the body.

The study, funded by the Wellcome Trust, the British Heart Foundation and the Medical Research Council (MRC), looked at where and how removing COX-2 caused changes in gene activity in mice. They found that knocking out COX-2 caused changes in three genes in the kidney which predicted a rise in levels of a molecule linked to cardiovascular disease, called ADMA. In subsequent tests, the researchers found that taking NSAIDs led to a rise in ADMA levels in mice and in 16 human volunteers.

Dr James Leiper, from the MRC Clinical Sciences Centre at Imperial, said: ''ADMA is an independent risk factor for cardiovascular disease. In people increases of ADMA similar to those we found are linked with significant increases in cardiovascular disease and death. Our discovery that COX-2 inhibitors raise ADMA levels provides a plausible mechanism for the increased cardiovascular risk associated with these drugs and provides insights into how this risk might be mitigated'

Professor Mitchell thinks that higher ADMA levels might work as an indicator of which patients are at greater risk of a heart attack.

"If we are right," said Professor Mitchell, "ADMA could be used as a biomarker in a simple blood test to identify who may be at risk, and regular screening would allow GPs to monitor patients' ADMA levels to ensure these remain within safe limits whilst taking the drug." The team are planning a clinical trial to test their idea.

ADMA interferes with the normal function of an amino acid called L-arginine, which plays a key protective role in heart health.

Professor Mitchell said: "In some settings, giving more L-arginine can offset the damaging effects of ADMA, so it's possible that supplements containing L-arginine could provide an antidote to the heart attack risk of NSAIDs. This would be simple to test as L-arginine is already widely available in health food shops as a sports and cardiovascular health supplement. More work is needed for which we would need major funding, but I believe it's worth looking at whether these types of supplements could protect those at risk."

###

For more information please contact:

Sam Wong
Research Media Officer
Imperial College London
Email: sam.wong@imperial.ac.uk
Tel: +44(0)20 7594 2198
Out of hours duty press officer: +44(0)7803 886 248

Notes to editors

1. Blerina Ahmetaj-Shala, Nicholas S. Kirkby et al. 'Evidence That Links Loss Of Cyclo-oxygenase-1 2 With Increased Asymmetric Dimethylarginine: Novel Explanation of Cardiovascular Side Effects Associated With Anti-inflammatory Drugs.' Circulation, 9 December 2014.

2. NSAIDs, which include ibuprofen and aspirin, are the most commonly used family of drugs in the world. It's estimated that every day, 30 million people worldwide will take an NSAID for relief from pain, fever, and inflammation.

3. About Imperial College London

Imperial College London is one of the world's leading universities. The College's 14,000 students and 7,500 staff are expanding the frontiers of knowledge in science, medicine, engineering and business, and translating their discoveries into benefits for society.

Founded in 1907, Imperial builds on a distinguished past - having pioneered penicillin, holography and fibre optics - to shape the future. Imperial researchers work across disciplines to improve global health, tackle climate change, develop sustainable energy technology and address security challenges. This blend of academic excellence and its real-world application feeds into Imperial's exceptional learning environment, where students participate in research to push the limits of their degrees.

Imperial nurtures a dynamic enterprise culture, where collaborations with industrial, healthcare and international partners are the norm. In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Imperial has nine London campuses, including Imperial West: a new 25 acre research and innovation centre in White City, west London. At Imperial West, researchers, businesses and higher education partners will co-locate to create value from ideas on a global scale.

http://www.imperial.ac.uk

4. The Medical Research Council has been at the forefront of scientific discovery to improve human health. Founded in 1913 to tackle tuberculosis, the MRC now invests taxpayers' money in some of the best medical research in the world across every area of health. Thirty MRC-funded researchers have won Nobel prizes in a wide range of disciplines, and MRC scientists have been behind such diverse discoveries as vitamins, the structure of DNA and the link between smoking and cancer, as well as achievements such as pioneering the use of randomised controlled trials, the invention of MRI scanning, and the development of a group of antibodies used in the making of some of the most successful drugs ever developed. Today, MRC-funded scientists tackle some of the greatest health problems facing humanity in the 21st century, from the rising tide of chronic diseases associated with ageing to the threats posed by rapidly mutating micro-organisms. http://www.mrc.ac.uk


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.