News Release

Tattoo-like sensor can detect glucose levels without a painful finger prick

Peer-Reviewed Publication

American Chemical Society

Scientists have developed the first ultra-thin, flexible device that sticks to skin like a rub-on tattoo and can detect a person's glucose levels. The sensor, reported in a proof-of-concept study in the ACS journal Analytical Chemistry, has the potential to eliminate finger-pricking for many people with diabetes.

Joseph Wang and colleagues in San Diego note that diabetes affects hundreds of millions of people worldwide. Many of these patients are instructed to monitor closely their blood glucose levels to manage the disease. But the standard way of checking glucose requires a prick to the finger to draw blood for testing. The pain associated with this technique can discourage people from keeping tabs on their glucose regularly. A glucose sensing wristband had been introduced to patients, but it caused skin irritation and was discontinued. Wang's team wanted to find a better approach.

The researchers made a wearable, non-irritating platform that can detect glucose in the fluid just under the skin based on integrating glucose extraction and electrochemical biosensing. Preliminary testing on seven healthy volunteers showed it was able to accurately determine glucose levels. The researchers conclude that the device could potentially be used for diabetes management and for other conditions such as kidney disease.

###

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter Facebook


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.