Public Release: 

New role uncovered for 'oldest' tumor suppressor gene

Institute of Cancer Research

Scientists have revealed a brand new function for one of the first cancer genes ever discovered - the retinoblastoma gene - in a finding that could open up exciting new approaches to treatment.

The retinoblastoma gene is so called because mutations to it cause a rare children's eye cancer of the same name, and is known to play a central role in stopping healthy cells from dividing uncontrollably.

Now the new study - jointly led by scientists at The Institute of Cancer Research, London, and UCL (University College London) - has found that the gene also has another important function, in helping to 'glue' severed strands of DNA back together.

The research suggests that existing drugs that exploit the weaknesses of some cancers in repairing their DNA could be effective against tumours with mutations to the retinoblastoma gene.

The study, published today (Thursday) in the journal Cell Reports, was funded by a range of organisations including Cancer Research UK, Worldwide Cancer Research, the Wellcome Trust and The Institute of Cancer Research (ICR) itself.

Researchers found that mutations to the retinoblastoma gene or RB1 - which are found in many cancers - prevent the effective fixing of broken DNA strands. This results in chromosome abnormalities which can lead to the development of tumours and drive cancers to evolve into more aggressive forms.

Numerous common cancer types have RB1 mutations, including hard-to-treat cancers such as triple-negative breast cancer, small cell lung cancer, glioblastoma, and aggressive types of prostate cancer.

Researchers deleted the RB1 gene from lab-grown human and mouse cancer cells, and looked at a variety of measures that indicate defective DNA repair. They found substantially more double-stranded DNA breaks and chromosome abnormalities in cells that lacked RB1 than those where the gene was functional.

In another experiment, the researchers demonstrated that the RB1 protein attaches to two other protein called XRCC5 and XRCC6, forming a cluster of molecules that mend broken strands of DNA.

RB1 was first discovered in the 1980s and has long been known to have an important role in controlling cell division. It was discovered through studies of the rare eye cancer retinoblastoma, which in around half of cases is caused by inherited mutations to the RB1 gene.

Dr Paul Huang, Team Leader in Cancer Biology at The Institute of Cancer Research, London, said:

"The retinoblastoma gene was one of the first cancer genes to be discovered and is one of the best known of all, so it's very exciting to have been able to identify a completely new function for it. The retinoblastoma gene is famous for helping control cell division, but we found that it has another important job in gluing broken strands of DNA back together. Our research could have real implications for cancer patients, because drugs that exploit weaknesses in DNA repair already exist, and there is now a rationale for testing them against cancers with retinoblastoma gene mutations."

Professor Sibylle Mittnacht, Leader of the Cancer Cell Signalling team and Professor of Cancer Biology at the UCL Cancer Institute, said:

"We are very excited about this new discovery. The retinoblastoma gene is mutated in many important cancers such as lung and breast. Our work demonstrates that these mutations cause the cancers' DNA to become defective. Because of this these cancers may evolve to more aggressive and therapy resistant forms. At the same time this discovery points to new and more effective ways in which these cancers can be treated."

Dr Kat Arney, science communications manager at Cancer Research UK, said:

"Faulty DNA repair pathways are the Achilles' heel of cancer, and drugs that target alternative DNA repair 'toolkits' such as RB1could be powerful potential treatments for people with cancer. Cancer Research UK scientists are at the forefront of developing these types of treatments, and we hope to see this new discovery translated into benefits for patients in the future."

Dr Helen Rippon, Head of Research at Worldwide Cancer Research, said:

"Just like it would be impossible for a mechanic to fix a car without knowing how it worked; scientists can't find new treatments for cancer without understanding the broken genes. Researching the nuts and bolts of cancer biology is crucial if we are to bring a brighter future for people diagnosed with the disease, and we are delighted to have helped fund this important study."


Notes to editors

For more information contact Claire Hastings on 020 7153 5380 / For enquiries out of hours, please call 07595 963 613.

The Institute of Cancer Research, London, is one of the world's most influential cancer research institutes.

Scientists and clinicians at The Institute of Cancer Research (ICR) are working every day to make a real impact on cancer patients' lives. Through its unique partnership with The Royal Marsden NHS Foundation Trust and 'bench-to-bedside' approach, the ICR is able to create and deliver results in a way that other institutions cannot. Together the two organisations are rated in the top four cancer centres globally.

The ICR has an outstanding record of achievement dating back more than 100 years. It provided the first convincing evidence that DNA damage is the basic cause of cancer, laying the foundation for the now universally accepted idea that cancer is a genetic disease. Today it leads the world at isolating cancer-related genes and discovering new targeted drugs for personalised cancer treatment.

As a college of the University of London, the ICR provides postgraduate higher education of international distinction. It has charitable status and relies on support from partner organisations, charities and the general public.

The ICR's mission is to make the discoveries that defeat cancer. For more information visit

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. We are among the world's top universities, as reflected by performance in a range of international rankings and tables. UCL currently has over 35,000 students from 150 countries and more than 11,000 staff. Our annual income is more than £1 billion. | Follow us on Twitter @uclnews | Watch our YouTube channel

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.