News Release

Extinct species skull shape, ancestors help predict prehistoric diet

Skull shape, biomechanics help scientists reconstruct prehistoric diets, but also strongly reflect ancestry

Peer-Reviewed Publication

PLOS

Understanding extinct species diets may require a greater understanding of the relationship between skull biomechanics and the animals' ancestry than previously thought, according to a new study published April 29, 2015 in the open-access journal PLOS ONE by Zhijie Jack Tseng and John Flynn from the American Museum of Natural History.

The diet of long-extinct animals may be inferred by using modern animals with similar skull shapes and tooth patterns as models, but scientists aren't sure if diet is the main factor influencing skull shape and biomechanics. To understand whether these models might apply to living species, the authors of this study modeled the relationship between skull shape and function, i.e., bite efficiency against the stiffness of the animal's skull, of five different modern carnivore species, including meat-eating "hypercarnivore" specialists, such as wolves and leopards, and more omnivorous "generalists," such as mongoose and raccoons.

The initial results showed that "animals with the same diets and biomechanical demands, like wolves and leopards--both hypercarnivores--were not linking together," lead author Jack Tseng said. "Instead, we saw a strong signal driven mostly by ancestry, where, for example, the leopard and the mongoose bind together because they're more closely related in an evolutionary context, although they have very different dietary preferences and feeding strategies."

Once the researchers accounted for the strong effects of ancestry and skull size on the models, hypercarnivores and generalists still could be distinguished based on biomechanics, in particular by looking at where along the tooth row the skull is strongest.

The researchers then applied this improved shape-function model to two extinct species: Thinocyon velox, a predatory mammal that was part of the now-extinct Creodont group, and Oodectes herpestoides, an early fossil predecessor of modern carnivores. They found that T. velox likely had a unique hypercarnivorous feeding style that allowed for skull strength at two places: prey capture with its front teeth, and powerful slicing and crushing with its back teeth. The biomechanical profile of O. herpestoides, meanwhile, suggests that it was a generalist, but compared to living relatives of similar body size, it might have fed on smaller prey because of its weaker skull.

Lead author John J. Flynn said, "We've found that diet can be linked to a number of factors--skull size, biomechanical attributes, and often, most importantly, the species' position in the tree of life."

###

Adapted by PLOS ONE from release provided by the author

In your coverage please use this URL to provide access to the freely available paper: http://dx.plos.org/10.1371/journal.pone.0124020

Citation: Tseng ZJ, Flynn JJ (2015) Are Cranial Biomechanical Simulation Data Linked to Known Diets in Extant Taxa? A Method for Applying Diet-Biomechanics Linkage Models to Infer Feeding Capability of Extinct Species. PLOS ONE 10(4): e0124020. doi:10.1371/journal.pone.0124020

Funding: This research was funded by NSF DEB-1257572 to ZJT and JJF, and an AMNH Frick Postdoctoral Fellowship (to ZJT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.