Public Release: 

New study reveals improved way to interpret high-throughput biological data

Earlham Institute

This study has developed a unique bioinformatics approach for identifying associations between molecules from a range of vast data sources. Applied to studies with the aim to measure metabolism in tissues under variating conditions e.g. genetics, diets and environment.

Opposed to current methods that apply statistical analysis to data sets as a whole, the proposed workflow breaks the initial data into smaller groups determined by known molecular interactions. Statistical methods can then be applied to these groups resulting in more accurate results than if the analysis had been applied to the whole dataset.

This technique has been shown to improve the detection of genes related to lipid metabolism on an example mouse nutritional study that increases our understanding of biochemical fluctuations by 15 per cent.

Identifying associations between metabolites, small molecules produced during metabolism, and genes is crucial to understanding processes in the cell. However, uncovering these relationships is a complex task, especially when integrating data that concern various types of molecules. Adding to this complexity is the vast quantity of data available for analysis, a result of the development of new experimental high-throughput techniques.

Initially, the molecular workflow will be applied to research into the benefits of broccoli for prostate cancer, in collaboration with the Institute of Food Research. As well as being applied to studying the health benefits of flavonoids, which are plant metabolites found in a variety of fruits and vegetables, in collaboration with the University of East Anglia.

By improving our capability to integrate data from various sources and identify links between metabolites and genes, this workflow will provide a more detailed diagnosis of cellular metabolism and gene expression in biological processes.

Co-author, Wiktor Jurkowski, Integrative Genomics Group Leader at TGAC, said: "Knowledge gathered in molecular networks can be harnessed to improve data integration and interpretation.

"Our approach, integrating transcriptomics and metabolomics data will help interpret signals measured by omics techniques to extend our knowledge of processes under specific biological conditions. Therefore, benefiting biologists in interpreting data, creating better hypothesises and pinpointing genes and metabolites involved to unravel the mechanism of interest.

"This is a proof-of-concept study and we are currently working towards improving the group generation strategy for spare areas of the interactome and less annotated species. We are applying this and other molecular network approaches to data generated in collaborative projects across Norwich Research Park."

###

The paper titled, "ONION: Functional Approach for Integration of Lipidomics and Transcriptomics Data" is published in PLOS ONE.

Notes to Editors

For more information, please contact:

Hayley London
Marketing & Communications Officer, The Genome Analysis Centre (TGAC)
T: +44 (0) 1603 450107,
E: Hayley.London@tgac.ac.uk

About TGAC

The Genome Analysis Centre (TGAC) is a world-class research institute focusing on the development of genomics and computational biology. TGAC is based within the Norwich Research Park and receives strategic funding from the Biotechnology and Biological Science Research Council (BBSRC) - £7.4M in 2013/14 - as well as support from other research funders. TGAC is one of eight institutes that receive strategic funding from BBSRC. TGAC operates a National Capability to promote the application of genomics and bioinformatics to advance bioscience research and innovation.

TGAC offers state of the art DNA sequencing facility, unique by its operation of multiple complementary technologies for data generation. The Institute is a UK hub for innovative Bioinformatics through research, analysis and interpretation of multiple, complex data sets. It hosts one of the largest computing hardware facilities dedicated to life science research in Europe. It is also actively involved in developing novel platforms to provide access to computational tools and processing capacity for multiple academic and industrial users and promoting applications of computational Bioscience. Additionally, the Institute offers a Training programme through courses and workshops, and an Outreach programme targeting schools, teachers and the general public through dialogue and science communication activities. http://www.tgac.ac.uk

About BBSRC

The Biotechnology and Biological Sciences Research Council (BBSRC) invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by Government, BBSRC invested over £509M in world-class bioscience in 2014-15. We support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

For more information about BBSRC, our science and our impact see: http://www.bbsrc.ac.uk

For more information about BBSRC strategically funded institutes see:http://www.bbsrc.ac.uk/institutes

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.