Public Release: 

Method could make hydrogen fuel cells more efficient

American Chemical Society

With the growth of wind and solar energy and the increasing popularity of electric vehicles, many people in the U.S. may have forgotten about the promised "hydrogen economy." But in research labs around the world, progress continues. Now scientists are reporting in the Journal of the American Chemical Society a new process that could help us move faster toward sustainable hydrogen-based energy.

One of the major challenges to developing affordable hydrogen fuel cells has been storage. Hydrogen is explosive and requires costly containers to hold it safely. But recently, scientists have shown that formic acid is a good candidate for storing hydrogen. The common industrial chemical -- also the stuff of ant venom -- is stable and inexpensive. One molecule of the acid is made of five atoms, two of which are hydrogen atoms. But splitting the formic acid to release hydrogen and produce electricity requires a lot of heating and processing. So Qiang Xu and colleagues set out to find a better way.

The researchers developed a simple method for producing a palladium-based nanomaterial that can spur the breakdown of formic acid into hydrogen and carbon dioxide. Its efficiency far exceeded that of any other reported heterogeneous catalysts, they say. They also found that their process only produced carbon dioxide and hydrogen without carbon monoxide contamination, which has been a problem with other methods.

###

The authors acknowledge funding from the National Institute of Advanced Industrial Science and Technology in Japan and the Japan Society for the Promotion of Science.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter Facebook

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.