Public Release: 

Using magnetic permeability to store information

IOP Publishing

Scientists have made promising steps in developing a new magnetic memory technology, which is far less susceptible to corruption by magnetic fields or thermal exposure than conventional memory.

The findings, which report the use of magnetic permeability - how easily a magnetic field will magnetize a material - are published today, Friday 11th September, in the Journal of Physics D: Applied Physics.

These findings open up a new approach to a variety of applications from high-density radiation hard memory suitable for space travel to more secure ID cards.

In conventional magnetic memory, such as that in a computer, or the magnetic strip of a credit card, the memory is read by 'reading' the magnetization of the memory bit. As this magnetization is written using a magnetic field, it can also be erased by a magnetic field.

Magnetic permeability - an intrinsic property of 'soft' ferromagnets - is not changed by exposure to a magnetic field, and therefore information stored by programming changes in the magnetic permeability of each memory bit will not be erased by exposure to magnetic fields.

"It was a big step just coming up with the idea of using magnetic permeability to store information, and coming up with a practical way of getting the memory near the sensor so that it can be read" explains Dr Alan Edelstein, an author on the paper. "I was surprised and pleased that we could make this approach work."

The technique used thermal heating with a laser to crystallize amorphous regions of ferromagnets. As the crystalline areas have a lower permeability than the amorphous areas, information can be read from the memory by reading the changes in a probe magnetic field.

With credit cards, RF chips have offered a more stable form of memory, but these can be read by a passer-by using an RF reader. As the probe magnetic field needs to be in close vicinity to the memory, this technique offers a more secure technology.

One of the issues with traditional magnetic memory is that capacity is limited by the superparamagnetic limit - essentially the size of the particles used in the memory. By using the magnetic permeability an intrinsic property of the material, microstructure and composition of the material become the limiting factors.

"At present we have low density sized bits" continues Edelstein. "But we have the potential to get much higher since we are not limited by the superparamagnetic limit - there are difficult technological limitations to overcome first though."

The paper also reports that the memory is less prone to degradation when exposed to gamma radiation - something that is important for memory used for space travel, as the memory would have to feature less shielding, thus reducing its weight.

The researchers are now working on a technique to make the memory re-writable. "We've demonstrated the ability to rewrite bits for a read/write memory, and hope to publish the results soon." concludes Edelstein.

###

Notes to Editors

IOP Publishing Press Release EMBARGOED UNTIL: 00.01 HRS BST FRIDAY 11TH SEPTEMBER

Contact

For further information, a full draft of the journal paper, or to talk with one of the researchers, contact IOP Senior Press Officer, Steve Pritchard: Tel: 0117 930 1032 E-mail: steve.pritchard@iop.org. For more information on how to use the embargoed material above, please refer to our embargo policy.

IOP Publishing Journalist Area

The IOP Publishing Journalist Area (http://journalists.iop.org/journalistLogin) gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos

Login details also give free access to IOPscience, IOP Publishing's journal platform. To apply for a free subscription to this service, please email the IOP Publishing Press team at ioppublishing.press@iop.org, with your name, organisation, address and a preferred username.

Using magnetic permeability bits to store information

The published version of the paper 'Using magnetic permeability bits to store information' (J. Phys. D: Appl. Phys. 48 405002) will be freely available online from Friday 11 September. It will be available at http://iopscience.iop.org/0022-3727/48/40/405401 (DOI: 10.1088/0022-3727/48/40/405002)

Journal of Physics D: Applied Physics

Journal of Physics D: Applied Physics is a major international journal reporting significant new results in all aspects of applied physics research. We welcome experimental, computational (including simulation and modelling) and theoretical studies of applied physics, and also studies in physics-related areas of biomedical and life sciences. The work must fall into one of the five sections below. If the work overlaps two or more journal sections then it can be submitted as an interdisciplinary applied physics paper. All work published in Journal of Physics D: Applied Physics must discuss applications or potential applications of the research presented.

IOP Publishing

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide.

Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of books, community websites, magazines, conference proceedings and a multitude of electronic services.

IOP Publishing is central to the Institute of Physics, a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of the Institute.

Go to ioppublishing.org or follow us @IOPPublishing.

Access to Research

Access to Research is an initiative through which the UK public can gain free, walk-in access to a wide range of academic articles and research at their local library. This article is freely available through this initiative. For more information, go to http://www.accesstoresearch.org.uk.

The Institute of Physics

The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.

Visit us at http://www.iop.org or follow us on Twitter @physicsnews.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.