News Release

Scientists use exhaled breath to detect hypoxia

Researchers working in the United States have demonstrated a technique that may enable real-time, in-flight detection of hypoxia in pilots.

Peer-Reviewed Publication

IOP Publishing

Researchers working in the United States have demonstrated a technique that may enable real-time, in-flight detection of hypoxia in pilots.

The study, led by researchers at the Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson AFB, Ohio, replicated a fairly standard 'hypoxic' event. Volunteers were exposed to 5 minutes of reduced oxygen levels to simulate higher altitudes, followed by 5 minutes at 100% oxygen 'recovery' - a typical response protocol to in-flight hypoxia.

The results, published today, 28th October 2015, in the Journal of Breath Research, indicate that volatile organic compound (VOC) analysis could identify biomarkers of hypoxia.

"Despite the myriad of advances in aerospace technology, many modern high performance aircraft still rely on the pilot to recognize the symptoms of hypoxia in order to initiate appropriate procedures in the event of a malfunction," said Dr. Claude C. Grigsby, Technical Advisor, Human Signatures Branch, 711th Human Performance Wing "This research provides the basis for both the utility of exhaled breath monitoring to monitor for hypoxia as well as targets for future solid state senor development."

He added, "This is one of many, on-going efforts at AFRL to develop real-time, non-invasive sensing technologies to enhance Airmen performance and safety."

Whilst pilots are typically trained to recognize hypoxic symptoms and react accordingly, sudden loss of cabin pressure could prevent the pilot from noticing the detrimental conditions prior to losing consciousness. Biomarkers such as the VOCs in exhaled breath could be used to detect hypoxia or trigger automated systems.

The researchers used two methods to monitor the exhaled breath of the volunteers, firstly collecting a sample prior to and following the simulated hypoxia and recovery, and by collecting samples every minute through the course of the simulation.

The results show that VOCs diminish following a hypoxic event; however the mechanism to explain this remains unclear.

"We have several hypotheses regarding the underlying mechanisms resulting in the changes observed in the exhaled breath VOC profiles. However, due to obvious limitations in human subject testing, these hypotheses will be challenging to prove." Adds Dr. Sean W. Harshman, Research Scientist, UES Inc. 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Oh.

"In spite of this fact, we are working to better understand hypoxic episodes mechanistically to validate our findings and to improve our non-invasive chemical sensing platforms. Our future and ongoing studies seek to confirm the data presented in this manuscript, develop a flight worthy chemical sensor, and begin further mechanistic studies of respiratory hypoxia. These data will allow us to gain a better understanding of hypoxic episodes and to better protect our flight crews."

###

Notes to Editors

Contact

For further information, a full draft of the journal paper, or to talk with one of the researchers, contact IOP Senior Press Officer, Steve Pritchard: Tel: 0117 930 1032 E-mail: steve.pritchard@iop.org. For more information on how to use the embargoed material above, please refer to our embargo policy.

The paper can be accessed here:

http://iopscience.iop.org/article/10.1088/1752-7155/9/4/047103

IOP Publishing Journalist Area

The IOP Publishing Journalist Area gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos

Login details also give free access to IOPscience, IOP Publishing's journal platform. To apply for a free subscription to this service, please email the IOP Publishing Press team at ioppublishing.press@iop.org, with your name, organisation, address and a preferred username.

The identification of hypoxia biomarkers from exhaled breath under normobaric conditions

The published version of the paper 'The identification of hypoxia biomarkers from exhaled breath under normobaric conditions' (J. Breath Res. 9 (2015) 047103) is freely available online at http://iopscience.iop.org/article/10.1088/1752-7155/9/4/047103.

DOI: 10.1088/1752-7155/9/4/047103

Journal of Breath Research

The Journal of Breath Research is dedicated to all aspects of breath science, with the major focus on analysis of exhaled breath in physiology and medicine, and the diagnosis and treatment of breath odours.

IOP Publishing

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide.

Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of books, community websites, magazines, conference proceedings and a multitude of electronic services.

IOP Publishing is central to the Institute of Physics, a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of the Institute.

Go to ioppublishing.org or follow us @IOPPublishing.

Access to Research

Access to Research is an initiative through which the UK public can gain free, walk-in access to a wide range of academic articles and research at their local library. This article is freely available through this initiative. For more information, go to http://www.accesstoresearch.org.uk.

The Institute of Physics

The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.

Visit us at http://www.iop.org or follow us on Twitter @physicsnews.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.