Public Release: 

Brain cancer self-organizes into streams, swirls, and spheres

At ASCB 2015, researchers reveal that brain cancer is highly self-organized into glioma streams that protect and spread tumor growth

American Society for Cell Biology

SAN DIEGO, CA--Commonly, we think of cancer as anarchy, a leaderless mob of deranged cells, storming through the body. Pedro Lowenstein, Maria Castro, and colleagues at the University of Michigan and Arizona State University think that cancer is highly organized--self-organized. In brain cancer, the Michigan and Arizona researchers report that glioma cells build tumors by self-organizing into streams,10-20 cells wide, that obey a mathematically predicted pattern for autonomous agents flowing together. These streams drag along slower gliomas, may block entry of immune cells, and swirl around a central axis containing glioma stem cells that feed the tumor's growth. The researchers will present their new work on tumor self-organization on Monday, December 14 at the 2015 Annual Meeting of the American Society for Cell Biology in San Diego, CA.

Lowenstein and Motsch mapped out this dynamic picture of glioma self-organization by building and comparing two model systems, one biological and one mathematical. The living model system was built in vivo using mouse and human glioma cells genetically tailored to express a deadly package of genes known to spur development and progression of brain tumors. The observed movement, distribution, and invasive nature of the resulting streams of elliptically shaped glioma cells were predicted by their mathematical model, they report. Assuming that the glioma cells were independent agents, the mathematical model took into account adhesion and repulsion dynamics between tumor cells. The results showed unmistakable signs of non-random, self-organization of brain tumors, say Lowenstein and Motsch.

Most striking, the presence of self-organizing structures was not related to any specific cancer mutation. These swirls eddied around cores of glioma stem cells that Lowenstein and Motsch describe as possible nucleating centers for brain tumor growth. The in vivo model also produced glioma cells organized as individual spheres, including some that slipped out of the tumor and set themselves adrift in the cerebrospinal fluid that surrounds the brain's ventricles, and may mediate tumor dispersion throughout the brain.

All this evident self-organization opens an exciting novel insight into brain cancer, say Lowenstein and Motsch, and makes disrupting tumor self-organization itself a new target for brain cancer treatment.

###

Streams, swirls, and neurospheres: in vivo self-organization of brain tumors revealed by mathematical and biological modeling
P.R. Lowenstein1,2, S. Motsch3, V.A. Yadav1, D. Zamler1, C. Koschmann1, F. Nunez?Aguilera1, A. Calinescu1, N. Kamran1, M. Dzaman1, M.G. Castro1,2
1Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, 2Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, 3Department of Mathematics and Statistics, Arizona State University, Tempe, AZ

Contact author: Pedro Lowenstein
pedrol@umich.edu

At ASCB 2015

Author presents:
Poster Session:Tumor Invasion and Metastasis 2
Monday, December 14
1:30-3:00 pm
P1079
Board Number: B714
ASCB Learning Center

Media contact: John Fleischman, jfleischman@ascb.org, 513-706-0212

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.