Public Release: 

Blood flow measurements in microfluidic devices fabricated by a micromilling technique

The researchers show the ability of a micromilling machine to manufacture microchannels down to 30 μm and also the ability of a microfluidic device to perform partial separation of red blood cells from plasma.

Bentham Science Publishers

IMAGE

IMAGE: Recently, researchers were able to produce milling tools smaller than 100 m and consequently have promoted the ability of the micromilling machines to fabricate microfluidic devices capable of performing cell... view more

Credit: Dr. Diana Pinho, Bentham Science Publishers

In this work, Dr. Diana and fellow researchers propose a low cost technique able to produce microfluidic devices for biomedical applications. The most common technique to fabricate biomedical microdevices is soft-lithography. However, it is a costly and time-consuming technique. Progress in manufacturing milling tools smaller than 100 μm, has enabled the use of micromilling machines to fabricate microfluidic devices capable of performing cell separation.

The researchers show not only the ability of a micromilling machine to fabricate microchannels down to 30 μm but also the ability of the manufactured microfluidic device to perform partial separation of red blood cells from plasma. They have performed blood flow visualization and measurements of the cell-free layer thickness by using a high-speed video microscopy system and demonstrated the advantages and limitations of the described micromilling fabrication technique to produce microfluidic devices for cellular-scale flow studies.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.